32 research outputs found

    Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial

    Get PDF
    Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18–85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25–75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300–5000 mg/g who had received maximum labelled or tolerated renin–angiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for ≄30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for ≄90 days, chronic dialysis for ≄90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4–2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49–0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85–2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75–1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, FundaciĂł IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by AcciĂłn de DinamizaciĂłn del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the AgĂšncia de GestiĂł d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 AcciĂłn EstratĂ©gica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-SubdirecciĂłn General de EvaluaciĂłn and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the AcciĂłn EstratĂ©gica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de InvestigaciĂłn (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos EstratĂ©gicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de FormaciĂłn en InvestigaciĂłn en Salud. Enrique CalderĂłn’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung UniversitĂ€tsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∌0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and SĂžren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, FundaciĂł IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by AcciĂłn de DinamizaciĂłn del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the AgĂšncia de GestiĂł d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta MarquiĂ© received research funding from ant PI19/00335 AcciĂłn EstratĂ©gica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirecciĂłn General de EvaluaciĂłn and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio JuliĂ  and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio JuliĂ  was also supported the by national grant PI17/00019 from the AcciĂłn EstratĂ©gica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario CĂĄceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de InvestigaciĂłn (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero GĂłmez, Javier Ampuero Herrojo, RocĂ­o Gallego DurĂĄn and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos EstratĂ©gicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de FormaciĂłn en InvestigaciĂłn en Salud. Enrique CalderĂłn's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. SolligĂ„rd: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung UniversitĂ€tsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N

    Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial

    Get PDF
    Background Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear. Methods RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047. Findings Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths. Interpretation Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population

    Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial

    Get PDF
    Background Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain. Methods RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov , NCT00541047 . Findings Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths. Interpretation Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy. Funding Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society

    Avalia??o in vivo da atividade anti-Trypanosoma cruzi de derivados nitroimidaz?licos.

    Get PDF
    O objetivo deste estudo foi avaliar a atividade anti-Trypanosoma cruzi de compostos nitroimidaz?licos usando quatro ensaios seq?enciais: (i) a avalia??o da efic?cia de uma dose ?nica de cada composto em reduzir a parasitemia e mortalidade, (ii) a determina??o da dose efetiva de cada novo composto usando um esquema terap?utico r?pido, por 7 dias, (iii) avalia??o da efic?cia dos composto em induzir cura em camundongos infectados pela cepa Y, que ? moderadamente resistente ao Benznidazol (Bz) e (iv) avalia??o da efic?cia em induzir cura em camundongos infectados com cepas resistentes ao Bz (cepas VL-10 e Colombiana). Os animais foram infectados com a cepa Y e tratados com Fexinidazol (Fex), DNDi-IM2, DNDi-IM3, DNDi-IM4 e com a droga de refer?ncia (Bz). Nossos resultados mostraram que para todos os nitroimidaz?is avaliados, uma ?nica dose de 500 mpk (mg/kg) foi eficiente em suprimir ou reduzir a carga parasit?ria e mortalidade de camundongos infectados pela cepa Y. No segundo esquema de tratamento foi observada uma rela??o entre a dose do composto avaliado e a resposta terap?utica. O tratamento com 300mpk/dia foi capaz de induzir maior (Fex e DNDi-IM3) similar (DNDi-IM2) ou menor (DNDi-IM4) redu??o dos n?veis de parasitemia, quando comparados com o tratamento com Bz. Em seguida, para verificar a efic?cia de cada composto avaliado em induzir cura parasitol?gica em camundongos infectados pela cepa Y, os animais foram tratados por 20 dias. Confirmando os resultados anteriores, o composto DNDi-IM4 n?o foi eficiente em induzir cura nos animais infectados pela cepa Y. O DNDi-IM2 induziu 33,3% de cura, sendo o Bz induziu 60,1% de cura. Diferentemente, o tratamento com 300mpk do Fex e do DNDi-IM3 induziu cura parasitol?gica em 80% e 100% dos camundongos, respectivamente. Considerando, que o Fex demonstrou alta atividade tripanocida, este composto foi utilizado para o tratamento de animais infectados com as cepas VL-10 e Colombiana, resistentes ao Bz. O tratamento com Fex induziu cura em 89% e 78% dos animais infectados pelas cepas VL-10 e Colombiana, respectivamente, sendo que o Bz n?o foi capaz de induzir cura em nenhum dos animais. O Fex ainda induziu 70% de cura em animais infectados com a cepa VL-10 quando administrado no curso da infec??o cr?nica. Adicionalmente, o tratamento com Fex foi eficaz em reduzir a miocardite em todos os animais infectados com as cepas VL-10 e Colombiana, mesmo nos animais n?o curados. De maneira geral, nossos resultados mostraram que todos os nitroimidazois avaliados apresentaram atividade anti-T. cruzi, mas com as diferen?as individuais na sua efic?cia.The aim of this study was to assess the anti-Trypanosoma cruzi activity of nitroimidazoles compounds using three sequential in vivo assays: (i) evaluation of the efficacy of a single dose of each compound to reduce parasitemia and mortality; (ii) determination of the effective dose of each new compound using a rapid treatment for 7 days; (iii) assessment of the efficacy of each compound to cure mice infected with the Y T. cruzi strain, which is moderately resistant to Benznidazole (Bz) and (iv) evaluate cure on T.cruzi resistant model of infection (VL-10 and Colobian strain). Experimental animals were infected with 5x103 blood trypomastigotes and treated with Fexinidazole (Fex), DNDi-IM2, DNDi-IM3, DNDi-IM4 and the reference drug, Bz. Our results showed that, for all evaluated nitroimidazoles, a single dose of 500 mpk (mg/kg) was efficient to suppress or reduce the parasite load and mortality of infected mice, at levels better, similar; or lower than Bz-treatment for Fex and DNDi-IM3, DNDi-IM2 or DNDi-IM4, respectively. In the second treatment scheme a relationship between the dose and the therapeutic response was observed. Usually, the treatment with 300mpk/day was able to induce higher (Fex and DNDi-IM3) similar (DNDi-IM2) or lower (DNDi-IM4) levels of parasite clearance, when compared with Bz treatment. Additionally, treatment with 300 mpk of the DNDi-IM4 for 20 days did not induce parasitological cure. The DNDi-IM3-treatment was able to induce parasitological cure in 33.3% of mice, being the Bz-treatment induced 60.1% of parasitological cure. Differently, treatment with 300mpk of the Fex and DNDi-IM3 was able to induce parasitological cure in 80% and 100% of mice, respectively. Considering the high efficacy of Fex we were interested to assess the effect of Fex on mice infected with VL-10 and Colombian Bz resistant strains. The Fex-treatment of mice infected with these T. cruzi stocks during the acute phase of the infection induced to 89% and 78% of parasitological cure, while the Bz-treatment was not able to induce cure in animals infected with these stocks. The Fex induced 70% of cure in VL-10 infected mice, when treated in cronic infection. More important, we demonstrated that Fex treatment decrease the myocarditis in all VL-10 and Colombian infected animals, although parasite eradication could not be achieved in all treated animals. These data clearly show that Fex has high anti-T. cruzi activity and efficacy to cure these experimental infection models, and is more effective when compared to standardized Bz treatment at the doses tested. An overall analysis in our results indicated that all nitroimidazoles tested here presented activity against T. cruzi, but with individual differences in their potency

    Benznidazole and Posaconazole in experimental Chagas disease: positive interaction in concomitant and sequential treatments.

    Get PDF
    Background: Current chemotherapy for Chagas disease is unsatisfactory due to its limited efficacy, particularly in the chronic phase, with frequent side effects that can lead to treatment discontinuation. Combined therapy is envisioned as an ideal approach since it may improve treatment efficacy whilst decreasing toxicity and the likelihood of resistance development. We evaluated the efficacy of posaconazole in combination with benznidazole on Trypanosoma cruzi infection in vivo. Methods and Findings: Benznidazole and posaconazole were administered individually or in combination in an experimental acute murine infection model. Using a rapid treatment protocol for 7 days, the combined treatments were more efficacious in reducing parasitemia levels than the drugs given alone, with the effects most evident in combinations of sub-optimal doses of the drugs. Subsequently, the curative action of these drug combinations was investigated, using the same infection model and 25, 50, 75 or 100 mg/kg/day (mpk) of benznidazole in combination with 5, 10 or 20 mpk of posaconazole, given alone or concomitantly for 20 days. The effects of the combination treatments on parasitological cures were higher than the sum of such effects when the drugs were administered separately at the same doses, indicating synergistic activity. Finally, sequential therapy experiments were carried out with benznidazole or posaconazole over a short interval (10 days), followed by the second drug administered for the same period of time. It was found that the sequence of benznidazole (100 mpk) followed by posaconazole (20 mpk) provided cure rates comparable to those obtained with the full (20 days) treatments with either drug alone, and no cure was observed for the short treatments with drugs given alone. Conclusions: Our data demonstrate the importance of investigating the potential beneficial effects of combination treatments with marketed compounds, and showed that combinations of benznidazole with posaconazole have a positive interaction in murine models of Chagas disease

    Benznidazole/Itraconazole Combination Treatment Enhances Anti-Trypanosoma cruzi Activity in Experimental Chagas Disease.

    No full text
    The nitroheterocyclic drugs nifurtimox and benznidazole are first-line drugs available to treat Chagas disease; however, they have limitations, including long treatment courses and toxicity. Strategies to overcome these limitations include the identification of new drugs with specific target profiles, re-dosing regimens for the current drugs, drug repositioning and combination therapy. In this work, we evaluated combination therapy as an approach for optimization of the current therapeutic regimen for Chagas disease. The curative action of benznidazole/itraconazole combinations was explored in an established infection of the mice model with the T. cruzi Y strain. The activities of the benznidazole/itraconazole combinations were compared with the results from those receiving the same dosage of each individual drug. The administration of benznidazole/itraconazole in combination eliminated parasites from the blood more efficiently than each drug alone. Here, there was a significant reduction of the number of treatment days (number of doses) necessary to induce parasitemia suppression with the benznidazole/itraconazole combination, as compared to each compound administered alone. These results clearly indicate the enhanced effects of these drugs in combination, particularly at the dose of 75 mg/kg, as the effects observed with the drug combinations were four times more effective than those of each drug used alone. Moreover, benznidazole/itraconazole treatment was shown to prevent or decrease the typical lesions associated with chronic experimental Chagas disease, as illustrated by similar levels of inflammatory cells and fibrosis in the cardiac muscle tissue of healthy and treated mice. These results emphasize the importance of exploring the potential of combination treatments with currently available compounds to specifically treat Chagas disease

    Benznidazole microcrystal preparation by solvent change precipitation and in vivo evaluation in the treatment of Chagas disease.

    No full text
    Benznidazole (BNZ) is traditionally used to treat Chagas disease. Despite its common use, BNZ has a poor water solubility and a variable bioavailability. The purpose of this study was to prepare BNZ microcrystals by solvent change precipitation and to study the effects of BNZ micronisation on therapeutic efficiency using a murine model of Chagas disease. The solvent change precipitation procedure was optimised in order to obtain stable and homogeneous particles with a small particle size, high yield and fast dissolution rate. The thermal and crystallographic analysis showed no polymorphic change in the microcrystals, and microscopy confirmed a significant reduction in particle size. A marked improvement in the drug dissolution rate was observed for micronised BNZ particles and BNZ tablets in comparison with untreated BNZ and commercial Rochagan_. In vivo studies showed a significant increase in the therapeutic efficacy of the BNZ microparticles, corroborating the dissolution results

    Benznidazole/Itraconazole combination treatment enhances anti-Trypanosoma cruzi activity in experimental Chagas disease.

    No full text
    The nitroheterocyclic drugs nifurtimox and benznidazole are first-line drugs available to treat Chagas disease; however, they have limitations, including long treatment courses and toxicity. Strategies to overcome these limitations include the identification of new drugs with specific target profiles, re-dosing regimens for the current drugs, drug repositioning and combination therapy. In this work, we evaluated combination therapy as an approach for optimization of the current therapeutic regimen for Chagas disease. The curative action of benznidazole/itraconazole combinations was explored in an established infection of the mice model with the T. cruzi Y strain. The activities of the benznidazole/itraconazole combinations were compared with the results from those receiving the same dosage of each individual drug. The administration of benznidazole/itraconazole in combination eliminated parasites from the blood more efficiently than each drug alone. Here, there was a significant reduction of the number of treatment days (number of doses) necessary to induce parasitemia suppression with the benznidazole/itraconazole combination, as compared to each compound administered alone. These results clearly indicate the enhanced effects of these drugs in combination, particularly at the dose of 75 mg/kg, as the effects observed with the drug combinations were four times more effective than those of each drug used alone. Moreover, benznidazole/itraconazole treatment was shown to prevent or decrease the typical lesions associated with chronic experimental Chagas disease, as illustrated by similar levels of inflammatory cells and fibrosis in the cardiac muscle tissue of healthy and treated mice. These results emphasize the importance of exploring the potential of combination treatments with currently available compounds to specifically treat Chagas disease
    corecore