4,230 research outputs found
Towards musical interaction: 'Schismatics' for e-violin and computer
This paper discusses the evolution of the Max/MSP patch used in schismatics (2007, rev. 2010) for electric violin (Violectra) and computer, by composer Sam Hayden in collaboration with violinist Mieko Kanno. schismatics involves a standard performance paradigm of a fixed notated part for the e-violin with sonically unfixed live computer processing. Hayden was unsatisfied with the early version of the piece: the use of attack detection on the live e-violin playing to trigger stochastic processes led to an essentially reactive behaviour in the computer, resulting in a somewhat predictable one-toone sonic relationship between them. It demonstrated little internal relationship between the two beyond an initial e-violin âactionâ causing a computer âeventâ. The revisions in 2010, enabled by an AHRC Practice-Led research award, aimed to achieve 1) a more interactive performance situation and 2) a subtler and more âmusicalâ relationship between live and processed sounds. This was realised through the introduction of sound analysis objects, in particular machine listening and learning techniques developed by Nick Collins. One aspect of the programming was the mapping of analysis data to synthesis parameters, enabling the computer transformations of the e-violin to be directly related to Kannoâs interpretation of the piece in performance
Multi-stakeholder process of co-designing small-scale fisheries policy in South Africa.
In 2005, a group of researchers, community-based organizations and lawyers got together with small-scale fishers to launch a class action law suit against the government of South Africa in its allocation system of Individual Transferable Quotas, on the ground that the system was unfair to small-scale fishing communities and threatened their right to practise their livelihoods. This effort resulted in the cabinet adoption of a new small-scale fisheries policy in 2014, with amendments being made to fisheries law (the Marine Living Resource Act 18 of 1998) to accommodate the issues and concerns of small-scale fisheries. Draft regulations and an implementation plan have recently been released, paving the way for the implementation of small-scale fisheries allocations in 2016. These legal and policy shifts are of great significance for small-scale fisheries, both in South Africa and elsewhere, and deserve careful examination. This paper discusses the processes leading to the development of a new small-scale fisheries policy and what has followed since. Specifically, the analysis focuses on a variety of collaborations between scholars from different disciplines; researchers from multiple fields; community practitioners representing diverse professional and community perspectives; and community organizations across local, state, national and international levels. The paper uses a model of change that crosses research and practitioner boundaries based on three key strategies: getting noticed; organizing at scale; and getting a seat at the negotiation table. It also considers the âtransdisciplinaryâ process of involving all relevant actors in strategic, collective, reflectionâactionâreflectionâaction âfrom belowâ, which was crucial in the co-designing of this small-scale policy formulation in South Africa
Theory of Unconventional Spin Density Wave: A Possible Mechanism of the Micromagnetism in U-based Heavy Fermion Compounds
We propose a novel spin density wave (SDW) state as a possible mechanism of
the anomalous antiferromagnetism, so-called the micromagnetism, in URu_2Si_2
below 17.5[K]. In this new SDW, the electron-hole pair amplitude changes its
sign in the momentum space as in the case of the unconventional
superconductivity. It is shown that this state can be realized in an extended
Hubbard model within the mean field theory. We also examine some characteristic
properties of this SDW to compare with the experimental results. All these
properties well explain the unsolved problem of the micromagnetism.Comment: REVTeX v3.1, 4 pages, 5 figure
Methodological considerations for neuroimaging in deep brain stimulation of the subthalamic nucleus in Parkinsonâs disease patients
Deep brain stimulation (DBS) of the subthalamic nucleus is a neurosurgical intervention for Parkinsonâs disease patients who no longer appropriately respond to drug treatments. A small fraction of patients will fail to respond to DBS, develop psychiatric and cognitive side-effects, or incur surgery-related complications such as infections and hemorrhagic events. In these cases, DBS may require recalibration, reimplantation, or removal. These negative responses to treatment can partly be attributed to suboptimal pre-operative planning procedures via direct targeting through low-field and low-resolution magnetic resonance imaging (MRI). One solution for increasing the success and efficacy of DBS is to optimize preoperative planning procedures via sophisticated neuroimaging techniques such as high-resolution MRI and higher field strengths to improve visualization of DBS targets and vasculature. We discuss targeting approaches, MRI acquisition, parameters, and post-acquisition analyses. Additionally, we highlight a number of approaches including the use of ultra-high field (UHF) MRI to overcome limitations of standard settings. There is a trade-off between spatial resolution, motion artifacts, and acquisition time, which could potentially be dissolved through the use of UHF-MRI. Image registration, correction, and post-processing techniques may require combined expertise of traditional radiologists, clinicians, and fundamental researchers. The optimization of pre-operative planning with MRI can therefore be best achieved through direct collaboration between researchers and clinicians
Ab initio calculations of the hydrogen bond
Recent x-ray Compton scattering experiments in ice have provided useful
information about the quantum nature of the interaction between HO
monomers. The hydrogen bond is characterized by a certain amount of charge
transfer which could be determined in a Compton experiment. We use ab-initio
simulations to investigate the hydrogen bond in HO structures by
calculating the Compton profile and related quantities in three different
systems, namely the water dimer, a cluster containing 12 water molecules and
the ice crystal. We show how to extract estimates of the charge transfer from
the Compton profiles.Comment: 16 pages, 7 figures, to appear in Phys. Rev.
Resonant Inelastic X-Ray Scattering from Valence Excitations in Insulating Copper-Oxides
We report resonant inelastic x-ray measurements of insulating LaCuO
and SrCuOCl taken with the incident energy tuned near the Cu K
absorption edge. We show that the spectra are well described in a shakeup
picture in 3rd order perturbation theory which exhibits both incoming and
outgoing resonances, and demonstrate how to extract a spectral function from
the raw data. We conclude by showing {\bf q}-dependent measurements of the
charge transfer gap.Comment: minor notational changes, discussion of anderson impurity model
fixed, references added; accepted by PR
Carbon nitride as a ligand: edge-site coordination of ReCl(CO)(3)-fragments to g-C3N4
IR spectroscopy and model structural studies show binding of ReCl(CO)3-fragments to carbon nitride (g-C3N4) occurs via Îș2 N,NâČ bidentate coordination
3 versus 7 Tesla magnetic resonance imaging for parcellations of subcortical brain structures in clinical settings
7 Tesla (7T) magnetic resonance imaging holds great promise for improved visualization of the human brain for clinical purposes. To assess whether 7T is superior regarding localization procedures of small brain structures, we compared manual parcellations of the red nucleus, subthalamic nucleus, substantia nigra, globus pallidus interna and externa. These parcellations were created on a commonly used clinical anisotropic clinical 3T with an optimized isotropic (o)3T and standard 7T scan. The clinical 3T MRI scans did not allow delineation of an anatomically plausible structure due to its limited spatial resolution. o3T and 7T parcellations were directly compared. We found that 7T outperformed the o3T MRI as reflected by higher Dice scores, which were used as a measurement of interrater agreement for manual parcellations on quantitative susceptibility maps. This increase in agreement was associated with higher contrast to noise ratios for smaller structures, but not for the larger globus pallidus segments. Additionally, control-analyses were performed to account for potential biases in manual parcellations by assessing semi-automatic parcellations. These results showed a higher consistency for structure volumes for 7T compared to optimized 3T which illustrates the importance of the use of isotropic voxels for 3D visualization of the surgical target area. Together these results indicate that 7T outperforms c3T as well as o3T given the constraints of a clinical setting
- âŠ