5,527 research outputs found

    Technologies for trapped-ion quantum information systems

    Get PDF
    Scaling-up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.Comment: 19 pages, 18 figure

    A cryogenic surface-electrode elliptical ion trap for quantum simulation

    Full text link
    Two-dimensional crystals of trapped ions are a promising system with which to implement quantum simulations of challenging problems such as spin frustration. Here, we present a design for a surface-electrode elliptical ion trap which produces a 2-D ion crystal and is amenable to microfabrication, which would enable higher simulated coupling rates, as well as interactions based on magnetic forces generated by on-chip currents. Working in an 11 K cryogenic environment, we experimentally verify to within 5% a numerical model of the structure of ion crystals in the trap. We also explore the possibility of implementing quantum simulation using magnetic forces, and calculate J-coupling rates on the order of 10^3 / s for an ion crystal height of 10 microns, using a current of 1 A

    Prescription for experimental determination of the dynamics of a quantum black box

    Full text link
    We give an explicit prescription for experimentally determining the evolution operators which completely describe the dynamics of a quantum mechanical black box -- an arbitrary open quantum system. We show necessary and sufficient conditions for this to be possible, and illustrate the general theory by considering specifically one and two quantum bit systems. These procedures may be useful in the comparative evaluation of experimental quantum measurement, communication, and computation systems.Comment: 6 pages, Revtex. Submitted to J. Mod. Op

    Quantum Hypothesis Testing with Group Structure

    Full text link
    The problem of discriminating between many quantum channels with certainty is analyzed under the assumption of prior knowledge of algebraic relations among possible channels. It is shown, by explicit construction of a novel family of quantum algorithms, that when the set of possible channels faithfully represents a finite subgroup of SU(2) (e.g., Cn,D2n,A4,S4,A5C_n, D_{2n}, A_4, S_4, A_5) the recently-developed techniques of quantum signal processing can be modified to constitute subroutines for quantum hypothesis testing. These algorithms, for group quantum hypothesis testing (G-QHT), intuitively encode discrete properties of the channel set in SU(2) and improve query complexity at least quadratically in nn, the size of the channel set and group, compared to na\"ive repetition of binary hypothesis testing. Intriguingly, performance is completely defined by explicit group homomorphisms; these in turn inform simple constraints on polynomials embedded in unitary matrices. These constructions demonstrate a flexible technique for mapping questions in quantum inference to the well-understood subfields of functional approximation and discrete algebra. Extensions to larger groups and noisy settings are discussed, as well as paths by which improved protocols for quantum hypothesis testing against structured channel sets have application in the transmission of reference frames, proofs of security in quantum cryptography, and algorithms for property testing.Comment: 22 pages + 9 figures + 3 table

    Multivariable quantum signal processing (M-QSP): prophecies of the two-headed oracle

    Full text link
    Recent work shows that quantum signal processing (QSP) and its multi-qubit lifted version, quantum singular value transformation (QSVT), unify and improve the presentation of most quantum algorithms. QSP/QSVT characterize the ability, by alternating ans\"atze, to obliviously transform the singular values of subsystems of unitary matrices by polynomial functions; these algorithms are numerically stable and analytically well-understood. That said, QSP/QSVT require consistent access to a single oracle, saying nothing about computing joint properties of two or more oracles; these can be far cheaper to determine given an ability to pit oracles against one another coherently. This work introduces a corresponding theory of QSP over multiple variables: M-QSP. Surprisingly, despite the non-existence of the fundamental theorem of algebra for multivariable polynomials, there exist necessary and sufficient conditions under which a desired stable multivariable polynomial transformation is possible. Moreover, the classical subroutines used by QSP protocols survive in the multivariable setting for non-obvious reasons, and remain numerically stable and efficient. Up to a well-defined conjecture, we give proof that the family of achievable multivariable transforms is as loosely constrained as could be expected. The unique ability of M-QSP to obliviously approximate joint functions of multiple variables coherently leads to novel speedups incommensurate with those of other quantum algorithms, and provides a bridge from quantum algorithms to algebraic geometry.Comment: 23 pages + 4 figures + 10 page appendix (added background information on algebraic geometry; publication in Quantum
    • …
    corecore