92 research outputs found

    Singularities in Speckled Speckle

    Full text link
    Speckle patterns produced by random optical fields with two (or more) widely different correlation lengths exhibit speckle spots that are themselves highly speckled. Using computer simulations and analytic theory we present results for the point singularities of speckled speckle fields: optical vortices in scalar (one polarization component) fields; C points in vector (two polarization component) fields. In single correlation length fields both types of singularities tend to be more{}-or{}-less uniformly distributed. In contrast, the singularity structure of speckled speckle is anomalous: for some sets of source parameters vortices and C points tend to form widely separated giant clusters, for other parameter sets these singularities tend to form chains that surround large empty regions. The critical point statistics of speckled speckle is also anomalous. In scalar (vector) single correlation length fields phase (azimuthal) extrema are always outnumbered by vortices (C points). In contrast, in speckled speckle fields, phase extrema can outnumber vortices, and azimuthal extrema can outnumber C points, by factors that can easily exceed 10410^{4} for experimentally realistic source parameters

    Optical Mobius Strips in Three Dimensional Ellipse Fields: Lines of Circular Polarization

    Full text link
    The major and minor axes of the polarization ellipses that surround singular lines of circular polarization in three dimensional optical ellipse fields are shown to be organized into Mobius strips. These strips can have either one or three half-twists, and can be either right- or left-handed. The normals to the surrounding ellipses generate cone-like structures. Two special projections, one new geometrical, and seven new topological indices are developed to characterize the rather complex structures of the Mobius strips and cones. These eight indices, together with the two well-known indices used until now to characterize singular lines of circular polarization, could, if independent, generate 16,384 geometrically and topologically distinct lines. Geometric constraints and 13 selection rules are discussed that reduce the number of lines to 2,104, some 1,150 of which have been observed in practice; this number of different C lines is ~ 350 times greater than the three types of lines recognized previously. Statistical probabilities are presented for the most important index combinations in random fields. It is argued that it is presently feasible to perform experimental measurements of the Mobius strips and cones described here theoretically

    Optical M0bius Strips in Three Dimensional Ellipse Fields: Lines of Linear Polarization

    Full text link
    The minor axes of, and the normals to, the polarization ellipses that surround singular lines of linear polarization in three dimensional optical ellipse fields are shown to be organized into Mobius strips and into structures we call rippled rings (r-rings). The Mobius strips have two full twists, and can be either right- or left-handed. The major axes of the surrounding ellipses generate cone-like structures. Three orthogonal projections that give rise to 15 indices are used to characterize the different structures. These indices, if independent, could generate 839,808 geometrically and topologically distinct lines; selection rules are presented that reduce the number of lines to 8,248, some 5,562 of which have been observed in a computer simulation. Statistical probabilities are presented for the most important index combinations in random fields. It is argued that it is presently feasible to perform experimental measurements of the Mobius strips, r-rings, and cones described here theoretically

    Short and Long Range Screening of Optical Singularities

    Full text link
    Screening of topological charges (singularities) is discussed for paraxial optical fields with short and with long range correlations. For short range screening the charge variance in a circular region with radius RR grows linearly with RR, instead of with R2R^{2} as expected in the absence of screening; for long range screening it grows faster than RR: for a field whose autocorrelation function is the zero order Bessel function J_{0}, the charge variance grows as R ln R$. A J_{0} correlation function is not attainable in practice, but we show how to generate an optical field whose correlation function closely approximates this form. The charge variance can be measured by counting positive and negative singularities inside the region A, or more easily by counting signed zero crossings on the perimeter of A. \For the first method the charge variance is calculated by integration over the charge correlation function C(r), for the second by integration over the zero crossing correlation function Gamma(r). Using the explicit forms of C(r) and of Gamma(r) we show that both methods of calculation yield the same result. We show that for short range screening the zero crossings can be counted along a straight line whose length equals P, but that for long range screening this simplification no longer holds. We also show that for realizable optical fields, for sufficiently small R, the charge variance goes as R^2, whereas for sufficiently large R, it grows as R. These universal laws are applicable to both short and pseudo-long range correlation functions

    Singularities in Speckled Speckle: Screening

    Full text link
    We study screening of optical singularities in random optical fields with two widely different length scales. We call the speckle patterns generated by such fields speckled speckle, because the major speckle spots in the pattern are themselves highly speckled. We study combinations of fields whose components exhibit short- and long-range correlations, and find unusual forms of screening

    Signed zeros of Gaussian vector fields-density, correlation functions and curvature

    Full text link
    We calculate correlation functions of the (signed) density of zeros of Gaussian distributed vector fields. We are able to express correlation functions of arbitrary order through the curvature tensor of a certain abstract Riemann-Cartan or Riemannian manifold. As an application, we discuss one- and two-point functions. The zeros of a two-dimensional Gaussian vector field model the distribution of topological defects in the high-temperature phase of two-dimensional systems with orientational degrees of freedom, such as superfluid films, thin superconductors and liquid crystals.Comment: 14 pages, 1 figure, uses iopart.cls, improved presentation, to appear in J. Phys.

    Large-scale Graphitic Thin Films Synthesized on Ni and Transferred to Insulators: Structural and Electronic Properties

    Get PDF
    We present a comprehensive study of the structural and electronic properties of ultrathin films containing graphene layers synthesized by chemical vapor deposition (CVD) based surface segregation on polycrystalline Ni foils then transferred onto insulating SiO2/Si substrates. Films of size up to several mm's have been synthesized. Structural characterizations by atomic force microscopy (AFM), scanning tunneling microscopy (STM), cross-sectional transmission electron microscopy (XTEM) and Raman spectroscopy confirm that such large scale graphitic thin films (GTF) contain both thick graphite regions and thin regions of few layer graphene. The films also contain many wrinkles, with sharply-bent tips and dislocations revealed by XTEM, yielding insights on the growth and buckling processes of the GTF. Measurements on mm-scale back-gated transistor devices fabricated from the transferred GTF show ambipolar field effect with resistance modulation ~50% and carrier mobilities reaching ~2000 cm^2/Vs. We also demonstrate quantum transport of carriers with phase coherence length over 0.2 μ\mum from the observation of 2D weak localization in low temperature magneto-transport measurements. Our results show that despite the non-uniformity and surface roughness, such large-scale, flexible thin films can have electronic properties promising for device applications.Comment: This version (as published) contains additional data, such as cross sectional TEM image
    corecore