3 research outputs found

    Design and finite element analysis of a 3D-printed packaging insert

    No full text
    Packaging inserts play a crucial role in protecting products during transportation. However, their design and production processes often rely on conventional methods limiting equipment capabilities. Moreover, the empirical nature of their design can result in a lack of reliability in the final product. To address these challenges, this study aimed to validate the design of a packaging insert using the finite element method and subsequently create it using 3D printing. The chosen material is a thermoplastic polyurethane (TPU) filament commonly used in fused deposition filament printers for 3D printing. This process demonstrates the feasibility of using 3D printing to create cushioning inserts for packaging and employing finite element analysis to simulate the insert behavior. The main findings of this research highlight the potential benefits of numerical simulation, revealing the areas where the insert is primarily impacted by weight. Furthermore, the forces load and displacement simulation results confirm that the TPU elastic limit (3.9x106 MPa) is sufficient to handle the weight this insert intends to hold. These tools determine the viability of the proposed design for its intended application. Therefore, this study verifies that 3D printing is a reliable option for producing packaging inserts, offering significant advantages over traditional methods. These advantages include increased design flexibility and the ability to create custom inserts on demand

    Development and redesign of flexible packaging under sustainability criteria

    No full text
    The circular economy and sustainable development are critical issues today, given the growing environmental pollution caused by solid waste, especially plastics. Furthermore, plastic waste has raised significant social concerns and alerted plastic product designers. Therefore, developing or redesigning plastic products in the flexible packaging industry is imperative to ensure their recyclability at the end of their life cycle. It is necessary to ensure that the mechanical and barrier properties of the ecological plastic packaging remain intact for specific uses. The current study aims to redesign flexible packaging, focusing on providing the mechanical and barrier properties of the packaging suitable for food industry applications, thus offering a solution through new design proposals that allow the development of sustainable and flexible packaging, emphasizing material reduction and recyclability. This study assessed and compared the mechanical properties of the proposed packaging with those of existing products. The results demonstrated the feasibility of reducing plastic film thickness or eliminating layers in a tri-laminated structure and transitioning to a bi-laminated structure. This adjustment did not compromise the mechanical and barrier properties; the oxygen barrier remained at 35.39 cc/m2*day, and the humidity stood at 0.57 mg/m2*day. This investigation led to a 26.48% reduction in the raw material consumption of laminated coils and 12.68% in Doypack type packaging used in food applications. Consequently, the decreased material usage and adoption of monomaterial structures significantly minimized the environmental impact of plastic waste contamination due to the possibility of mechanically recycling the final product

    Wear Dry Behavior of the Al-6061-Al2O3 Composite Synthesized by Mechanical Alloying

    No full text
    The present research deals with the comparative wear behavior of a mechanically milled Al-6061 alloy and the same alloy reinforced with 5 wt.% of Al2O3 nanoparticles (Al-6061-Al2O3) under different dry sliding conditions. For this purpose, an aluminum-silicon-based material was synthesized by high-energy mechanical alloying, cold consolidated, and sintered under pressureless and vacuum conditions. The mechanical behavior was evaluated by sliding wear and microhardness tests. The structural characterization was carried out by X-ray diffraction and scanning electron microscopy. Results showed a clear wear resistance improvement in the aluminum matrix composite (Al-6061-Al2O3) in comparison with the Al-6061 alloy since nanoparticles act as a third hard body against wear. This behavior is attributed to the significant increment in hardness on the reinforced material, whose strengthening mechanisms mainly lie in a nanometric size and homogeneous dispersion of particles offering an effective load transfer from the matrix to the reinforcement. Discussion of the wear performance was in terms of a protective thin film oxide formation, where protective behavior decreases as a function of the sliding speed
    corecore