9 research outputs found
Validation of multiplex PCR for detection and differentiation of Salmonellas
The abstract is devoted to interlaboratory testing and clarification of the PCR-based test for its implementation in Ukraine
Development of the Multiplex PCR for Detection of the DNA-Contained Emergent Diseases Agents in Pigs (African Swine Fever, Aujeszky Disease, Circoviral Disease)
This abstract is devoted to development of method for rapid detection of the DNA-containing viral pathogens of pig in clinical materials using conventional multiplex PCR platfor
Molecular Detection and Phylogenetic Analysis of Riemerella anatipestifer in Poultry and Wild Geese in Poland
Riemerella anatipestifer (RA) is one of the most relevant bacterial pathogens of commercial waterfowl from clinical and economic points of view. Our study aimed to evaluate the prevalence of RA infection in different types of commercial poultry in Poland and verify the potential role of wild geese as vectors of this pathogen. We tested a total of 126 poultry flocks, including geese (N = 20), ducks (N = 42), turkeys (N = 64) and 19 wild geese, including greater white-fronted geese (N = 9), greylag geese (N = 5) and Taiga bean geese (N = 5). Tracheal swabs were examined for RA using a PCR targeting a conserved region of the 16S rRNA gene. Selected PCR products were sequenced to perform the phylogenetic analysis. Among the commercial poultry, the highest RA prevalence was found in flocks of ducks (35.7%) and geese (30.0%), whereas the lowest one was found in turkeys (3.2%). Most tested wild geese (94.7%) were RA positive. The phylogenetic analysis showed relatively low genetic diversity of the sequences analyzed, which gathered in two clusters of the phylogenetic tree, and the minimum nucleotide identity was 98.6%. Our results would support the contention that RA isolates from commercial poultry circulate in wild bird populations but are not transmitted back to poultry
Presence of vaccine-derived newcastle disease viruses in wild birds
Our study demonstrates the repeated isolation of vaccine-derived Newcastle disease viruses from different species of wild birds across four continents from 1997 through 2014. The data indicate that at least 17 species from ten avian orders occupying different habitats excrete vaccine-derived Newcastle disease viruses. The most frequently reported isolates were detected among individuals in the order Columbiformes (n = 23), followed in frequency by the order Anseriformes (n = 13). Samples were isolated from both free-ranging (n = 47) and wild birds kept in captivity (n = 7). The number of recovered vaccine-derived viruses corresponded with the most widely utilized vaccines, LaSota (n = 28) and Hitchner B1 (n = 19). Other detected vaccine-derived viruses resembled the PHY-LMV2 and V4 vaccines, with five and two cases, respectively. These results and the ubiquitous and synanthropic nature of wild pigeons highlight their potential role as indicator species for the presence of Newcastle disease virus of low virulence in the environment. The reverse spillover of live agents from domestic animals to wildlife as a result of the expansion of livestock industries employing massive amounts of live virus vaccines represent an underappreciated and poorly studied effect of human activity on wildlife119sem informaçã
Presence of Vaccine-Derived Newcastle Disease Viruses in Wild Birds
<div><p>Our study demonstrates the repeated isolation of vaccine-derived Newcastle disease viruses from different species of wild birds across four continents from 1997 through 2014. The data indicate that at least 17 species from ten avian orders occupying different habitats excrete vaccine-derived Newcastle disease viruses. The most frequently reported isolates were detected among individuals in the order <i>Columbiformes</i> (n = 23), followed in frequency by the order <i>Anseriformes</i> (n = 13). Samples were isolated from both free-ranging (n = 47) and wild birds kept in captivity (n = 7). The number of recovered vaccine-derived viruses corresponded with the most widely utilized vaccines, LaSota (n = 28) and Hitchner B1 (n = 19). Other detected vaccine-derived viruses resembled the PHY-LMV2 and V4 vaccines, with five and two cases, respectively. These results and the ubiquitous and synanthropic nature of wild pigeons highlight their potential role as indicator species for the presence of Newcastle disease virus of low virulence in the environment. The reverse spillover of live agents from domestic animals to wildlife as a result of the expansion of livestock industries employing massive amounts of live virus vaccines represent an underappreciated and poorly studied effect of human activity on wildlife.</p></div
Collated Isolates from GenBank and SEPRL samples.
<p>A total of 54 isolates from the following taxonomic orders are tabulated below: <i>Accipitriformes</i> (n = 1); <i>Anseriformes</i> (n = 13); <i>Charadriiformes</i> (n = 3); <i>Columbiformes</i> (n = 23); <i>Falconiformes</i> (n = 1); <i>Galliformes</i> (n = 4); <i>Passeriformes</i> (n = 2); <i>Pelecaniformes</i> (n = 1); <i>Phoenicopteriformes</i> (n = 1); <i>Psittaciformes</i> (n = 4); Unknown (n = 1). GenBank accession numbers bolded are strains sequenced from this study.</p
Phylogenetic tree of isolates and their relationship to class II NDV viruses.
<p>Phylogenetic analysis based on the complete nucleotide sequence of the fusion gene of isolates representing NDV class II. The evolutionary history was inferred by using the Maximum Likelihood method based on Tamura 3-parameter model with 500 bootstrap replicates [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0162484#pone.0162484.ref070" target="_blank">70</a>]. The tree with the highest log likelihood (-108983.3717) is shown. A discrete Gamma distribution was used to model evolutionary rate differences among sites (4 categories (+G, parameter = 0.0936). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 39.7777% sites). The tree is drawn to scale with branch lengths measured in the number of substitutions per site and the percentage of trees in which the associated taxa clustered together are shown below the branches. The analysis involved 81 nucleotide sequences with a total of 1662 positions in the final dataset. Isolates studied in this work are designated in front of the taxa name as follows: USA—●; Ukraine—○; Brazil—□, Bulgaria—■. Evolutionary analyses were conducted in MEGA6 [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0162484#pone.0162484.ref067" target="_blank">67</a>]. The Roman numerals presented in the taxa names in the phylogenetic trees represent the respective genotype for each isolate, followed by the GenBank identification number, host name (if available), country of isolation, strain designation and country of isolation.</p
Rock Pigeon virus isolation, HI antibody titer, and intracerebral pathogenicity indices (ICPIs).
<p>Field swabs collected from the oral and cloacal cavities positive for virus are listed with a + symbol, otherwise an N/A is listed. ICPI experimental infection swabs collected in the lab from the oral and cloacal cavities positive for virus are listed below with their corresponding ICPI values, otherwise an N/A is listed.</p