5,713 research outputs found
Non-linear photonic crystals as a source of entangled photons
Non-linear photonic crystals can be used to provide phase-matching for
frequency conversion in optically isotropic materials. The phase-matching
mechanism proposed here is a combination of form birefringence and phase
velocity dispersion in a periodic structure. Since the phase-matching relies on
the geometry of the photonic crystal, it becomes possible to use highly
non-linear materials. This is illustrated considering a one-dimensional
periodic AlGaAs / air structure for the generation of 1.5
m light. We show that phase-matching conditions used in schemes to create
entangled photon pairs can be achieved in photonic crystals.Comment: 4 pages, 3 figure
Realisation of Hardy's Thought Experiment
We present an experimental realisation of Hardy's thought experiment [Phys.
Rev. Lett. {\bf 68}, 2981 (1992)], using photons. The experiment consists of a
pair of Mach-Zehnder interferometers that interact through photon bunching at a
beam splitter. A striking contradiction is created between the predictions of
quantum mechanics and local hidden variable based theories. The contradiction
relies on non-maximally entangled position states of two particles.Comment: 5 page
Voltage-controlled electron tunnelling from a single self-assembled quantum dot embedded in a two-dimensional-electron-gas-based photovoltaic cell
We perform high-resolution photocurrent (PC) spectroscopy to investigate
resonantly the neutral exciton ground-state (X0) in a single InAs/GaAs
self-assembled quantum dot (QD) embedded in the intrinsic region of an
n-i-Schottky photodiode based on a two-dimensional electron gas (2DEG), which
was formed from a Si delta-doped GaAs layer. Using such a device, a single-QD
PC spectrum of X0 is measured by sweeping the bias-dependent X0 transition
energy through that of a fixed narrow-bandwidth laser via the quantum-confined
Stark effect (QCSE). By repeating such a measurement for a series of laser
energies, a precise relationship between the X0 transition energy and bias
voltage is then obtained. Taking into account power broadening of the X0
absorption peak, this allows for high-resolution measurements of the X0
homogeneous linewidth and, hence, the electron tunnelling rate. The electron
tunnelling rate is measured as a function of the vertical electric field and
described accurately by a theoretical model, yielding information about the
electron confinement energy and QD height. We demonstrate that our devices can
operate as 2DEG-based QD photovoltaic cells and conclude by proposing two
optical spintronic devices that are now feasible.Comment: 34 pages, 11 figure
Magnonic Charge Pumping via Spin-Orbit Coupling
The interplay between spin, charge, and orbital degrees of freedom has led to
the development of spintronic devices like spin-torque oscillators, spin-logic
devices, and spin-transfer torque magnetic random-access memories. In this
development spin pumping, the process where pure spin-currents are generated
from magnetisation precession, has proved to be a powerful method for probing
spin physics and magnetisation dynamics. The effect originates from direct
conversion of low energy quantised spin-waves in the magnet, known as magnons,
into a flow of spins from the precessing magnet to adjacent normal metal leads.
The spin-pumping phenomenon represents a convenient way to electrically detect
magnetisation dynamics, however, precessing magnets have been limited so far to
pump pure spin currents, which require a secondary spin-charge conversion
element such as heavy metals with large spin Hall angle or multi-layer layouts
to be detectable. Here, we report the experimental observation of charge
pumping in which a precessing ferromagnet pumps a charge current, demonstrating
direct conversion of magnons into high-frequency currents via the relativistic
spin-orbit interaction. The generated electric current, differently from spin
currents generated by spin-pumping, can be directly detected without the need
of any additional spin to charge conversion mechanism and amplitude and phase
information about the relativistic current-driven magnetisation dynamics. The
charge-pumping phenomenon is generic and gives a deeper understanding of the
recently observed spin-orbit torques, of which it is the reciprocal effect and
which currently attract interest for their potential in manipulating magnetic
information. Furthermore, charge pumping provides a novel link between
magnetism and electricity and may find application in sourcing alternating
electric currents.Comment: 3 figure
Linked and knotted beams of light, conservation of helicity and the flow of null electromagnetic fields
Maxwell's equations allow for some remarkable solutions consisting of pulsed
beams of light which have linked and knotted field lines. The preservation of
the topological structure of the field lines in these solutions has previously
been ascribed to the fact that the electric and magnetic helicity, a measure of
the degree of linking and knotting between field lines, are conserved. Here we
show that the elegant evolution of the field is due to the stricter condition
that the electric and magnetic fields be everywhere orthogonal. The field lines
then satisfy a `frozen field' condition and evolve as if they were unbreakable
filaments embedded in a fluid. The preservation of the orthogonality of the
electric and magnetic field lines is guaranteed for null, shear-free fields
such as the ones considered here by a theorem of Robinson. We calculate the
flow field of a particular solution and find it to have the form of a Hopf
fibration moving at the speed of light in a direction opposite to the
propagation of the pulsed light beam, a familiar structure in this type of
solution. The difference between smooth evolution of individual field lines and
conservation of electric and magnetic helicity is illustrated by considering a
further example in which the helicities are conserved, but the field lines are
not everywhere orthogonal. The field line configuration at time t=0 corresponds
to a nested family of torus knots but unravels upon evolution
Noncoding RNAs and gene silencing
Noncoding RNA has long been proposed to control gene expression via sequence-specific interactions with regulatory regions. Here, we review the role of noncoding RNA in heterochromatic silencing and in the silencing of transposable elements (TEs), unpaired DNA in meiosis, and developmentally excised DNA. The role of cotranscriptional processing by RNA interference and by other mechanisms is discussed, as well as parallels with RNA silencing in imprinting, paramutation, polycomb silencing, and X inactivation. Interactions with regulatory sequences may well occur, but at the RNA rather than at the DNA level
Varenicline and suicidal behaviour: a cohort study based on data from the General Practice Research Database
Objective To determine whether varenicline, a recently licensed smoking cessation product, is associated with an increased risk of suicide and suicidal behaviour compared with alternative treatments bupropion and nicotine replacement therapy
The effect of pulse crop rotation and controlled-release urea on the N accumulation and end-use quality of CWRS wheat
Non-Peer ReviewedSpring wheat was grown at Carman in 2000 and 2001, and at Brandon, MB, in 2001, on field pea
and flax stubble at three rates of N (0, 30, and 90 kg N ha-1) supplied as ammonium nitrate (AN)
or controlled release urea (CRU), a polyurethane-coated urea. Wheat was grown in 2000 and
2001 at Swift Current, SK, on field pea and durum stubble at three rates of urea N (34, 50, and
78 kg N ha-1) based on soil test recommendations. Wheat grown on field pea stubble (P-W) had
higher protein content (PC) than wheat grown on flax/durum stubble (F-W) at four of the five
sites evaluated. Contrary to expectations, post-anthesis apparent net mineralized N and
proportion of total N uptake were higher for F-W compared to P-W at the Carman 2000 and
Brandon 2001 sites. Differences between fertilizer N sources were minor. Breadmaking quality
of the wheat end-use quality was also assessed. At the same flour protein content (FPC), P-W
had a shorter Mixograph dough development time, work input-to-peak, dough strength index,
and breakdown resistance, and also tended to be more extensible than F-W
Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems
We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE
- …