1,642 research outputs found

    Sigmoid(x): secure distributed network storage

    Get PDF
    Secure data storage is a serious problem for computer users today, particularly in enterprise environments. As data requirements grow, traditional approaches of secured silos are showing their limitations. They represent a single – or at least, limited – point of failure, and require significant, and increasing, maintenance and overhead. Such solutions are totally unsuitable for consumers, who want a ‘plug and play’ secure solution for their increasing datasets – something with the ubiquity of access of Facebook or webmail. Network providers can provide centralised solutions, but that returns us to the first problem. Sigmoid(x) takes a completely different approach – a scalable, distributed, secure storage mechanism which shares data storage between the users themselves

    COMBINED ARTIFICIAL INTELLIGENCE BEHAVIOUR SYSTEMS IN SERIOUS GAMING

    Get PDF
    This thesis proposes a novel methodology for creating Artificial Agents with semi-realistic behaviour, with such behaviour defined as overcoming common limitations of mainstream behaviour systems; rapidly switching between actions, ignoring “obvious” event priorities, etc. Behaviour in these Agents is not fully realistic as some limitations remain; Agents have a “perfect” knowledge about the surrounding environment, and an inability to transfer knowledge to other Agents (no communication). The novel methodology is achieved by hybridising existing Artificial Intelligence (AI) behaviour systems. In most artificial agents (Agents) behaviour is created using a single behaviour system, whereas this work combines several systems in a novel way to overcome the limitations of each. A further proposal is the separation of behavioural concerns into behaviour systems that are best suited to their needs, as well as describing a biologically inspired memory system that further aids in the production of semi-realistic behaviour. Current behaviour systems are often inherently limited, and in this work it is shown that by combining systems that are complementary to each other, these limitations can be overcome without the need for a workaround. This work examines in detail Belief Desire Intention systems, as well as Finite State Machines and explores how these methodologies can complement each other when combined appropriately. By combining these systems together a hybrid system is proposed that is both fast to react and simple to maintain by separating behaviours into fast-reaction (instinctual) and slow-reaction (behavioural) behaviours, and assigning these to the most appropriate system. Computational intelligence learning techniques such as Artificial Neural Networks have been intentionally avoided, as these techniques commonly present their data in a “black box” system, whereas this work aims to make knowledge explicitly available to the user. A biologically inspired memory system has further been proposed in order to generate additional behaviours in Artificial Agents, such as behaviour related to forgetfulness. This work explores how humans can quickly recall information while still being able to store millions of pieces of information, and how this can be achieved in an artificial system

    Indoor radio channel propagation modelling by ray tracing techniques

    Get PDF

    Timing verification of dynamically reconfigurable logic for Xilinx Virtex FPGA series

    Get PDF
    This paper reports on a method for extending existing VHDL design and verification software available for the Xilinx Virtex series of FPGAs. It allows the designer to apply standard hardware design and verification tools to the design of dynamically reconfigurable logic (DRL). The technique involves the conversion of a dynamic design into multiple static designs, suitable for input to standard synthesis and APR tools. For timing and functional verification after APR, the sections of the design can then be recombined into a single dynamic system. The technique has been automated by extending an existing DRL design tool named DCSTech, which is part of the Dynamic Circuit Switching (DCS) CAD framework. The principles behind the tools are generic and should be readily extensible to other architectures and CAD toolsets. Implementation of the dynamic system involves the production of partial configuration bitstreams to load sections of circuitry. The process of creating such bitstreams, the final stage of our design flow, is summarized

    Defective sperm function in human male infertility

    Get PDF

    Coulomb Oscillations of Indium-doped ZnO Nanowire Transistors in a Magnetic Field

    Full text link
    We report on the observation of Coulomb oscillations from localized quantum dots superimposed on the normal hopping current in ZnO nanowire transistors. The Coulomb oscillations can be resolved up to 20 K. Positive anisotropic magnetoresistance has been observed due to the Lorentz force on the carrier motion. Magnetic field-induced tunneling barrier transparency results in an increase of oscillation amplitude with increasing magnetic field. The energy shift as a function of magnetic field indicates electron wavefunction modification in the quantum dots.Comment: 16 pages, 6 figure

    Debate on In Re Bilski

    Get PDF

    Debate on In Re Bilski

    Get PDF
    • …
    corecore