16 research outputs found

    Ice-Cream Manufacturers\u27 Accounts

    Get PDF

    Underwater blast loading of partially submerged sandwich composite materials in relation to air blast loading response

    Get PDF
    The research presented in this paper focusses on the underwater blast resilience of a hybrid composite sandwich panel, consisting of both glass-fibre and carbon-fibre. The hybrid fibres were selected to optimise strength and stiffness during blast loading by promoting fibre interactions. In the blast experiment, the aim was to capture full-field panel deflection during large-scale underwater blast using high-speed 3D Digital Image Correlation (DIC). The composite sandwich panel was partially submerged and subjected to a 1 kg PE7 charge at 1 m stand-off. The charge was aligned with the centre of the panel at a depth of 275 mm and mimicked the effect of a near-field subsurface mine. The DIC deflection data shows that the horizontal cross-section of the panel deforms in a parabolic shape until excessive deflection causes core shear cracking. The panel then forms the commonly observed “bathtub” deformation shape. DIC data highlighted the expected differences in initial conditions compared to air-blast experiments, including the pre-strains caused by the mass of water (hydrostatic pressure). Furthermore, water depth was shown to significantly influence panel deflection, strain and hence damage sustained under these conditions. Panel deformations and damage after blast was progressively more severe in regions deeper underwater, as pressures were higher and decayed slower compared to regions near the free surface.An identical hybrid composite sandwich panel was subjected to air blast; one panel underwent two 8 kg PE7 charges in succession at 8 m stand-off. DIC was also implemented to record the panel deformations during air blast. The air and underwater blast tests represent two different regimes of blast loading: one far-field in air and one near-field underwater. The difference in deflection development, caused by the differing fluid mediums and stand-off distances, is apparent from the full-field results. During underwater blast the panel underwent peak pressure loading of approximately 52.6 MPa whilst during air blast the panel was subjected to 67.7 kPa followed by 68.9 kPa peak pressure loads in succession. The two experiments demonstrate the response of the same hybrid composite sandwich panel under two differing blast regimes.The post-blast damage and strength of the hybrid panels following air and underwater blasts were evaluated. Post-blast testing revealed that the underwater blast causes significantly more damage compared to air blast, particularly debonding between the skins and core. The air blast panel sustains no visible rear skin/core debonding, whereas 13 regions of rear-face debonds are identified on the underwater blast panel. Sustaining no front-skin breakage was advantageous for retaining a high proportion of the compressive modulus for this hybrid layup following underwater blast. Damage mechanisms were interrelated. Determining the most detrimental type is not straightforward in real explosive and non-idealised experiments, however debonding was understandably shown to be significant. A further study to isolate failure modes and improve in situ instrumentation is ongoing

    Fracture performance of epoxy foam: Low density to bulk polymer

    Get PDF
    Epoxy foams with densities ranging from 180 to 500 kg/m3 were prepared and mechanically tested in compression, tension, and single-edge notched bending (SENB) configurations. Fracture results revealed a marked transition in behaviour at a critical density, between 227 kg/m3 and 249 kg/m3 . Lower density foams failed at low SENB displacement, producing low toughness and fracture energy results, whereas higher density foams failed at higher SENB displacements, with correspondingly higher values of toughness and fracture energy. The stress-intensity factor increased monotonically with density, from 0.1 to 0.79 MPa m1/2. The fracture energy, GIc, of the foams reached values of up to 3.5 times that of the bulk polymer, 268 J/m2 . Lower density foams below the transition in fracture behaviour exhibited a small number of large cells, caused by cell coalescence, and a wider cell size distribution than the denser foams. This distribution appears linked to the transition in fracture behaviour. The behaviour revealed in this paper raises the point whether in future design criteria, where foams are now often used in composite sandwich structures, allowance should be made for denser foams to be used as appreciable increases in fracture energy of the foam core are achievable

    Fracture performance of fibre-reinforced epoxy foam

    Get PDF
    Low density aramid and carbon fibre-reinforced epoxy foam has been synthesised with the aim of improving mechanical properties, principally fracture performance. The foam properties measured were fracture energy, compressive strength, and density. The influence of fibre type, loading, and length was investigated. In addition, composite face-sheet bond tests were performed to ascertain how effective toughness transferred from individual component to composite structure. In general, the addition of fibres improved the mechanical performance of reinforced samples compared to the control foam. Increases in compressive strength were moderate whilst fracture energy was increased by up to 107% from 124 J/m2 to 256 J/m2 by the addition of 0.75 mm aramid fibres. Increased fracture energy of the foam and the presence of fibres on the foam surface, caused an increase in face-sheet bond propagation fracture toughness of 50% from 277 J/m2 to 416 J/m2

    Digital image correlation of cross-ply laminates in tension to reveal microcracking

    Get PDF
    The use of Digital Image Correlation (DIC) to reveal microstructural damage in cross-ply laminates was investigated. Matrix toughness plays a key role in governing microcracking at the tow level in near-surface plies. Experiments revealed that using a tough epoxy polymer as the matrix of the laminate resulted in increased laminate moduli in the principal directions. DIC provides insights into cross-ply laminate failure; the increase in modulus is attributed to microcrack formation in transverse plies. Early onset of matrix cracking around the tows is revealed by variations in the strain along the gauge length. The use of a tough epoxy polymer delays the load at which this cracking occurs. When an untoughened epoxy polymer is used as the matrix, microcracking can be observed at the beginning of the test, suggesting processing induced damage. The use of toughened polymers as the matrix of composite laminates is recommended to mitigate against this

    Experimental investigation of the air blast performance of hybrid composite skinned sandwich panels with X-ray micro-CT damage assessment

    Get PDF
    This research investigates the performance of interlaminar hybrid composites as the skins of composite sandwich panels under blast loading with the aim of promoting delamination between dissimilar plies for energy absorption. The deformation of the composite panels was captured using high-speed digital image correlation (DIC). High-speed full-field DIC enables failure to be captured at the moment it occurs across the entire panel. X-ray micro-CT imaging was used to assess the post-blast damage sustained by particular areas of interest from each panel, which were selected based on DIC results. The combination of full-field DIC and detailed X-ray micro-CT scanning enabled a unique comparison of both the global and localised blast resilience of hybrid and conventional composite sandwich panels to be performed. Following a single blast load, the extent of damage to the Hybrid-3B skinned sandwich panel was found to lie between that of GFRP and CFRP skinned sandwich panels. X-ray micro-CT scanning of these panels reveals that there is no continuous damage path through the skin thickness of Hybrid-3B, whereas the GFRP and CFRP panels sustain damage in every ply. Following repeat blast loading, the Hybrid-4 skinned sandwich panel suffered from a front skin crack spanning the length of the panel. Post-blast compressive strength testing reveals that this skin crack and resulting core crack acted as a stress relief, limiting the damage sustained elsewhere in the panel. It was concluded that Hybrid-3B results in a good trade-off between strength and stiffness and is advantageous over conventional CFRP and GFRP panels under a single blast load. Under repeated loading Hybrid-4 offers advantages over Hybrid-3B. Finally, the design of the support structure can significantly aid in blast resilience, and, a holistic approach considering both panels and support should be taken when designing for blast resilience

    Toughening of face-sheet core bonds in sandwich structures

    No full text
    Methods of improving the toughness of the bond between a foam core and a carbon fibre face-sheet in a sandwich structure were investigated. The Single Cantilever Beam (SCB) on a travelling platform was identified as an appropriate mode-I dominant test-method. The introduction of machined grooves in the foam resulted in a 50% improvement in the measured toughness of the face-sheet-core bond. Toughening of the face-sheets via core–shell rubber particles resulted in a change in fracture locus away from the interface and into the foam. The use of aramid fibre-reinforced foam as the core of the sandwich was also found to improve the interface bond toughness by up to 50%. The fibre-reinforced foams promoted the emergence of R-curve behaviour as the crack propagated

    Impact response of composite sandwich structures with toughened matrices

    No full text
    The mechanisms of failure of a composite sandwich structure subjected to a projectile impact have been investigated. The results reveal the complex interplay between the various damage dissipation mechanisms. The effects of modifying the matrix of the skins with polysiloxane core–shell rubber (CSR) nanoparticles and silica nanoparticles were investigated. Single cantilever beam specimens were tested to evaluate skin-core debonding. The addition of CSR nanoparticles to the matrix beyond 3 wt% causes a change in failure mechanism from sub-interface foam failure to interfacial failure when 6 and 9 wt% CSR are added. The sandwich structures were impacted with an aluminium projectile at 130 m/s. High speed cameras were used to obtain 3D digital image correlation of the back-face. Sectioning and imaging of the panels revealed damage in the form of front skin perforation and delamination, crushing and fracture of the core and back-face skin-core debonding. The impacted specimens also exhibited a transition in failure mechanism relating to rear face skin-core debonding between 3 and 6 wt%. Panels containing low amounts of CSR resulted in increased core cracking, while beyond the transition point, widespread rear face skin-core debonding was observed. At 3 wt% CSR, optimum back face deflection is achieved, and lower front skin delamination is experienced
    corecore