1 research outputs found

    Evaluation of the groundnut model PNUTGRO for crop response to water availability, sowing dates, and seasons

    Get PDF
    Field experiments were conducted during the 1987, 1991 and 1992 rainy seasons at Patancheru (latitude 17°32′N; longitude 78°16′E; elevation 545 m), Andhra Pradesh, India, to collect data to test and validate the hedgerow version of the groundnut model PNUTGRO for predicting phenological development, light interception, canopy growth, dry matter production, pod and seed yields of groundnut (Arachis hypogaea L.) as influenced by row spacing and plant population. The model was calibrated using the crop growth and phenology data of groundnut (cv. Robut 33-1) obtained from the 1987 and 1991 rainy season experiments. In these experiments groundnut was grown at plant populations ranging from 5 to 45 plants/m2 with and without irrigation. Changes were made in the cultivar-specific coefficients related to the light penetration into the crop canopy and dry matter production. The model was validated against independent data obtained from a 1992 rainy season experiment. In 1992, groundnut was grown at plant populations ranging from 10 to 40 plants/m2 and at row spacings of 20, 30 and 60 cm. The model predicted the occurrence of vegetative and reproductive stages, canopy development, total dry matter production and its partitioning to pods and seed accurately. Maximum leaf area index observed during the season was significantly correlated with simulated values (r2 = 0.95). In spite of some incidence of diseases and pests, the correlation between simulated and observed pod yield was significant (r2 = 0.61). It is concluded from this study that the hedgerow version of the groundnut model PNUTGRO can be used to quantify groundnut growth and yields as influenced by plant population and row spacing
    corecore