44 research outputs found

    In vivo imaging through the entire thickness of human cornea by full-field optical coherence tomography

    Get PDF
    Despite obvious improvements in visualization of the in vivo cornea through the faster imaging speeds and higher axial resolutions, cellular imaging stays unresolvable task for OCT, as en face viewing with a high lateral resolution is required. The latter is possible with FFOCT, a method that relies on a camera, moderate numerical aperture (NA) objectives and an incoherent light source to provide en face images with a micrometer-level resolution. Recently, we for the first time demonstrated the ability of FFOCT to capture images from the in vivo human cornea1. In the current paper we present an extensive study of appearance of healthy in vivo human corneas under FFOCT examination. En face corneal images with a micrometer-level resolution were obtained from the three healthy subjects. For each subject it was possible to acquire images through the entire corneal depth and visualize the epithelium structures, Bowman's layer, sub-basal nerve plexus (SNP) fibers, anterior, middle and posterior stroma, endothelial cells with nuclei. Dimensions and densities of the structures visible with FFOCT, are in agreement with those seen by other cornea imaging methods. Cellular-level details in the images obtained together with the relatively large field-of-view (FOV) and contactless way of imaging make this device a promising candidate for becoming a new tool in ophthalmological diagnostics

    Lack of evidence of disease contamination in ovarian tissue harvested for cryopreservation from patients with Hodgkin lymphoma and analysis of factors predictive of oocyte yield

    Get PDF
    Ovarian cryopreservation is a promising technique to preserve fertility in women with Hodgkin lymphoma (HL) treated with chemotherapy. Thus, the aim of this study was to examine harvested ovarian tissue for subclinical involvement by HL by morphology/immunohistochemistry, and to define patient and treatment factors predictive of oocyte yield. This was a retrospective analysis of 26 ovarian tissue samples harvested for cryopreservation from women with HL. Histology, immunohistochemistry and follicle density (number mm−3) was examined. Disease status and preharvest chemotherapy details were obtained on 24 patients. The median age was 22 years (range 13–29). Seven of 24 patients had infradiaphragmatic disease at time of harvest. Nine of 20 patients had received chemotherapy preharvest (ABVD (Adriamycin®, Bleomycin, Vinblastine and Dacarbazine)=7, other regimens=2). The seven receiving ABVD showed no difference in follicle density compared to patients not receiving treatment (n=14); (median=1555 vs 1620 mm3 P=0.97). Follicle density measurement showed no correlation with patient age (R2=0.0001, P=0.99). There was no evidence of HL involvement in the 26 samples examined (95% CI=0–11%). In conclusion, subclinical involvement of HL has not been identified in ovarian tissue, even when patients have infradiaphragmatic disease. Furthermore, the quality of tissue harvested does not appear to be adversely affected by patient's age or prior ABVD chemotherapy

    Pathogen reduction/inactivation of products for the treatment of bleeding disorders:what are the processes and what should we say to patients?

    Get PDF
    Patients with blood disorders (including leukaemia, platelet function disorders and coagulation factor deficiencies) or acute bleeding receive blood-derived products, such as red blood cells, platelet concentrates and plasma-derived products. Although the risk of pathogen contamination of blood products has fallen considerably over the past three decades, contamination is still a topic of concern. In order to counsel patients and obtain informed consent before transfusion, physicians are required to keep up to date with current knowledge on residual risk of pathogen transmission and methods of pathogen removal/inactivation. Here, we describe pathogens relevant to transfusion of blood products and discuss contemporary pathogen removal/inactivation procedures, as well as the potential risks associated with these products: the risk of contamination by infectious agents varies according to blood product/region, and there is a fine line between adequate inactivation and functional impairment of the product. The cost implications of implementing pathogen inactivation technology are also considered

    Glyoxalase II does not support methylglyoxal detoxification but serves as a general trypanothione thioesterase in African trypanosomes

    No full text
    Glyoxalase I and II form a ubiquitous glutathione-dependent pathway for the detoxification of reactive and mutagenic ketoaldehydes. Methylglyoxal produced as spontaneous by-product of glycolysis is probably the main physiological substrate. Consequently, African trypanosomes with their exorbitant glucose turnover were expected to have a most efficient detoxification system. Trypanosoma brucei possesses a trypanothione [bis(glutathionyl)spermidine]-dependent glyoxalase II but lacks a glyoxalase I gene. Methylglyoxal reductase as well as dehydrogenase activities are negligible. However, the concentrations of methylglyoxal and advanced glycation end products in the parasites are similar to those in different mammalian cells and the mechanism of methylglyoxal elimination remains elusive. Glyoxalase II is an abundant protein. Overexpression of the gene as well as RNA interference in bloodstream and procyclic cells did not result in a growth phenotype. Deletion of both alleles in procyclic parasites revealed that the enzyme is not essential at least under culture conditions. Recombinant glyoxalase II hydrolyzed the trypanothione-thioesters of methylglyoxal, glyoxal and 4,5-dioxovalerate, substrates of the classical glyoxalase system, with high efficiency. The absence of a glyoxalase I, however, renders these thioesters unlikely as physiological substrates. Here we show that trypanothione-thioesters can be generated from the respective coenzyme A derivative by transesterification. S-Acetyl- and S-prop ionyl trypanothione obtained by this spontaneous reaction proved to be excellent substrates of T brucei glyoxalase II. This offers a function for the parasite glyoxalase II as general trypanothione thioesterase independent of ketoaldehyde detoxification. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved
    corecore