24 research outputs found

    Proper genomic profiling of (BRCA1-mutated) basal-like breast carcinomas requires prior removal of tumor infiltrating lymphocytes

    Get PDF
    BRCA1-mutated breast carcinomas may have distinct biological features, suggesting the involvement of specific oncogenic pathways in tumor development. The identification of genomic aberrations characteristic for BRCA1-mutated breast carcinomas could lead to a better understanding of BRCA1-associated oncogenic events and could prove valuable in clinical testing for BRCA1-involvement in patients. Methods: For this purpose, genomic and gene expression profiles of basal-like BRCA1-mutated breast tumors (n=27) were compared with basal-like familial BRCAX (non-. BRCA1/. 2/. CHEK2*1100delC) tumors (n=14) in a familial cohort of 120 breast carcinomas. Results: Genome wide copy number profiles of the BRCA1-mutated breast carcinomas in our data appeared heterogeneous. Gene expression analyses identifi

    Somatic genomic alterations in retinoblastoma beyond RB1 are rare and limited to copy number changes

    Get PDF
    Retinoblastoma is a rare childhood cancer initiated by RB1 mutation or MYCN amplification, while additional alterations may be required for tumor development. However, the view on single nucleotide variants is very limited. To better understand oncogenesis, we determined the genomic landscape of retinoblastoma. We performed exome sequencing of 71 retinoblastomas and matched blood DNA. Next, we determined the presence of single nucleotide variants, copy number alterations and viruses. Aside from RB1, recurrent gene mutations were very rare. Only a limited fraction of tumors showed BCOR (7/71, 10%) or CREBBP alterations (3/71, 4%). No evidence was found for the presence of viruses. Instead, specific somatic copy number alterations were more common, particularly in patients diagnosed at later age. Recurrent alterations of chromosomal arms often involved less than one copy, also in highly pure tumor samples, suggesting within-tumor heterogeneity. Our results show that retinoblastoma is among the least mutated cancers and signify the extreme sensitivity of the childhood retina for RB1 loss. We hypothesize that retinoblastomas arising later in retinal development benefit more from subclonal secondary alterations and therefore, these alterations are more selected for in these tumors. Targeted therapy based on these subclonal events might be insufficient for complete tumor control

    Genomic profiling of CHEK2*1100delC-mutated breast carcinomas

    Get PDF
    Background: CHEK2*1100delC is a moderate-risk breast cancer susceptibility allele with a high prevalence in the Netherlands. We performed copy number and gene expression profiling to investigate whether CHEK2*1100delC breast cancers harbor characteristic genomic aberrations, as seen for BRCA1 mutated breast cancers. Methods: We performed high-resolution SNP array and gene expression profiling of 120 familial breast carcinomas selected from a larger cohort of 155 familial breast tumors, including BRCA1, BRCA2, and CHEK2 mutant tumors. Gene expression analyses based on a mRNA immune signature was used to identify samples with relative low amounts of tumor infiltrating lymphocytes (TILs), which were previously found to disturb tumor copy number and LOH (loss of heterozygosity) profiling. We specifically compared the genomic and gene expression profiles of CHEK2*1100delC breast cancers (n = 14) with BRCAX (familial non-BRCA1/BRCA2/CHEK2*1100delC mutated) breast cancers (n = 34) of the luminal intrinsic subtypes for which both SNP-array and gene expression data is available. Results: High amounts of TILs were found in a relatively small number of luminal breast cancers as compared to breast cancers of the basal-like subtype. As expected, the

    Using RNA-sequencing to detect novel splice variants related to drug resistance in in vitro cancer models

    No full text
    Drug resistance remains a major problem in the treatment of cancer for both hematological malignancies and solid tumors. Intrinsic or acquired resistance can be caused by a range of mechanisms, including increased drug elimination, decreased drug uptake, drug inactivation and alterations of drug targets. Recent data showed that other than by well-known genetic (mutation, amplification) and epigenetic (DNA hypermethylation, histone post-translational modification) modifications, drug resistance mechanisms might also be regulated by splicing aberrations. This is a rapidly growing field of investigation that deserves future attention in order to plan more effective therapeutic approaches. The protocol described in this paper is aimed at investigating the impact of aberrant splicing on drug resistance in solid tumors and hematological malignancies. To this goal, we analyzed the transcriptomic profiles of several in vitro models through RNA-seq and established a qRT-PCR based method to validate candidate genes. In particular, we evaluated the differential splicing of DDX5 and PKM transcripts. The aberrant splicing detected by the computational tool MATS was validated in leukemic cells, showing that different DDX5 splice variants are expressed in the parental vs. resistant cells. In these cells, we also observed a higher PKM2/PKM1 ratio, which was not detected in the Panc-1 gemcitabineresistant counterpart compared to parental Panc-1 cells, suggesting a different mechanism of drug-resistance induced by gemcitabine exposure

    Genomic landscape of retinoblastoma in Rb−/−p130−/− mice resembles human retinoblastoma

    No full text
    Several murine retinoblastoma models have been generated by deleting the genes encoding for retinoblastoma susceptibility protein pRb and one of its family members p107 or p130. In Rb−/−p107−/− retinoblastomas, somatic copy number alterations (SCNAs) like Mdm2 amplification or Cdkn2a deletion targeting the p53-pathway occur, which is uncommon for human retinoblastoma. In our study, we determined SCNAs in retinoblastomas developing in Rb−/−p130−/− mice and compared this to murine Rb−/−p107−/− tumors and human tumors. Chimeric mice were made by injection of 129/Ola-derived Rb−/−p130−/− embryonic stem cells into wild type C57BL/6 blastocysts. SCNAs of retinoblastoma samples were determined by low-coverage (∼0.5×) whole genome sequencing. In Rb−/−p130−/− tumors, SCNAs included gain of chromosomes 1 (3/23 tumors), 8 (1/23 tumors), 10 (1/23 tumors), 11 (2/23 tumors), and 12 (4/23 tumors), which could be mapped to frequently altered chromosomes in human retinoblastomas. While the altered chromosomes in Rb−/−p130−/− tumors were similar to those in Rb−/−p107−/− tumors, the alteration frequencies were much lower in Rb−/−p130−/− tumors. Most of the Rb−/−p130−/− tumors (16/23 tumors, 70%) were devoid of SCNAs, in strong contrast to Rb−/−p107−/− tumors, which were never (0/15 tumors) SCNA-devoid. Similarly, to human retinoblastoma, increased age at diagnosis significantly correlated with increased SCNA frequencies. Additionally, focal loss of Cdh11 was observed in one Rb−/−p130−/− tumor, which enforces studies in human retinoblastoma that identified CDH11 as a retinoblastoma suppressor. Moreover, based on a comparison of genes altered in human and murine retinoblastoma, we suggest exploring the role of HMGA1 and SRSF3 in retinoblastoma development

    Diagnostic yield of a targeted gene panel in primary ciliary dyskinesia patients

    No full text
    We aimed to determine the diagnostic yield of a targeted-exome panel in a cohort of 74 Dutch primary ciliary dyskinesia (PCD) patients. The panel consisted of 26 PCD-related and 284 candidate genes. To prioritize PCD candidate genes, we investigated the transcriptome of human airway cells of 12 healthy volunteers during in vitro ciliogenesis and hypothesized that PCD-related genes show significant upregulation. We compared gene expression in epithelial precursor cells grown as collagen monolayer and ciliated cells grown in suspension by RNA sequencing. All genes reported as PCD causative, except NME8, showed significant upregulation during in vitro ciliogenesis. We observed 67.6% diagnostic yield when testing the targeted-exome panel in our cohort. There was relatively high percentage of DNAI and HYDIN mutations compared to other countries. The latter may be due to our solution for the problem of the confounding HYDIN2 pseudogene. Candidate genes included two recently published PCD-related genes DNAJB13 and PIH1D3; identification of the latter was a direct result of this study. In conclusion, we demonstrate 67.6% diagnostic yield by targeted exome sequencing in a Dutch PCD population and present a highly sensitive and moderately specific approach for identification of PCD-related genes, based on significant upregulation during in vitro ciliogenesis

    Loss of photoreceptorness and gain of genomic alterations in retinoblastoma reveal tumor progression

    Get PDF
    Background: Retinoblastoma is a pediatric eye cancer associated with RB1 loss or MYCN amplification (RB1+/+MYCNA). There are controversies concerning the existence of molecular subtypes within RB1−/− retinoblastoma. To test whether these molecular subtypes exist, we performed molecular profiling. Methods: Genome-wide mRNA expression profiling was performed on 76 primary human retinoblastomas. Expression profiling was complemented by genome-wide DNA profiling and clinical, histopathological, and ex vivo drug sensitivity data. Findings: RNA and DNA profiling identified major variability between retinoblastomas. While gene expression differences between RB1+/+MYCNA and RB1−/− tumors seemed more dichotomous, differences within the RB1−/− tumors were gradual. Tumors with high expression of a photoreceptor gene signature were highly differentiated, smaller in volume and diagnosed at younger age compared with tumors with low photoreceptor signature expression. Tumors with lower photoreceptor expression showed increased expression of genes involved in M-phase and mRNA and ribosome synthesis and increased frequencies of somatic copy number alterations. Interpretation: Molecular, clinical and histopathological differences between RB1−/− tumors are best explained by tumor progression, reflected by a gradual loss of differentiation and photoreceptor expression signature. Since copy number alterations were more frequent in tumors with less photoreceptorness, genomic alterations might be drivers of tumor progression. Research in context: Retinoblastoma is an ocular childhood cancer commonly caused by mutations in the RB1 gene. In order to determine optimal treatment, tumor subtyping is considered critically important. However, except for very rare retinoblastomas without an RB1 mutation, there are controversies as to whether subtypes of retinoblastoma do exist. Our study shows that retinoblastomas are highly diverse but rather than reflecting distinct tumor types with a different etiology, our data suggests that this diversity is a result of tumor progression driven by cumulative genetic alterations. Therefore, retinoblastomas should not be categorized in distinct subtypes, but be described according to their stage of progression

    Somatic genomic alterations in retinoblastoma beyond RB1 are rare and limited to copy number changes

    No full text
    Retinoblastoma is a rare childhood cancer initiated by RB1 mutation or MYCN amplification, while additional alterations may be required for tumor development. However, the view on single nucleotide variants is very limited. To better understand oncogenesis, we determined the genomic landscape of retinoblastoma. We performed exome sequencing of 71 retinoblastomas and matched blood DNA. Next, we determined the presence of single nucleotide variants, copy number alterations and viruses. Aside from RB1, recurrent gene mutations were very rare. Only a limited fraction of tumors showed BCOR (7/71, 10%) or CREBBP alterations (3/71, 4%). No evidence was found for the presence of viruses. Instead, specific somatic copy number alterations were more common, particularly in patients diagnosed at later age. Recurrent alterations of chromosomal arms often involved less than one copy, also in highly pure tumor samples, suggesting within-tumor heterogeneity. Our results show that retinoblastoma is among the least mutated cancers and signify the extreme sensitivity of the childhood retina for RB1 loss. We hypothesize that retinoblastomas arising later in retinal development benefit more from subclonal secondary alterations and therefore, these alterations are more selected for in these tumors. Targeted therapy based on these subclonal events might be insufficient for complete tumor control

    Osteogenic transdifferentiation of primary human fibroblasts to osteoblast-like cells with human platelet lysate

    No full text
    Inherited bone disorders account for about 10% of documented Mendelian disorders and are associated with high financial burden. Their study requires osteoblasts which play a critical role in regulating the development and maintenance of bone tissue. However, bone tissue is not always available from patients. We developed a highly efficient platelet lysate-based approach to directly transdifferentiate skin-derived human fibroblasts to osteoblast-like cells. We extensively characterized our in vitro model by examining the expression of osteoblast-specific markers during the transdifferentiation process both at the mRNA and protein level. The transdifferentiated osteoblast-like cells showed significantly increased expression of a panel of osteogenic markers. Mineral deposition and ALP activity were also shown, confirming their osteogenic properties. RNA-seq analysis allowed the global study of changes in the transcriptome of the transdifferentiated cells. The transdifferentiated cells clustered separately from the primary fibroblasts with regard to the significantly upregulated genes indicating a distinct transcriptome profile; transdifferentiated osteoblasts also showed significant enrichment in gene expression related to skeletal development and bone mineralization. Our presented in vitro model may potentially contribute to the prospect of studying osteoblast-dependent disorders in patient-derived cells
    corecore