250 research outputs found
Recommended from our members
Static Dielectric Constant of β-Ga2O3 Perpendicular to the Principal Planes (100), (010), and (001)
The relative static dielectric constant ℇr of β-Ga2O3 perpendicular to the planes (100), (010), and (001) is determined in the temperature range from 25 K to 500 K by measuring the AC capacitance of correspondingly oriented plate capacitor structures using test frequencies of up to 1 MHz. This allows a direct quantification of the static dielectric constant and a unique direction assignment of the obtained values. At room temperature, ℇr perpendicular to the planes (100), (010), and (001) amounts to 10.2 ± 0.2, 10.87 ± 0.08, and 12.4 ± 0.4, respectively, which clearly evidence the anisotropy expected for β-Ga2O3 due to its monoclinic crystal structure. An increase of ℇr by about 0.5 with increasing temperature from 25 K to 450 K was found for all orientations. Our ℇr data resolve the inconsistencies in the previously available literature data with regard to absolute values and their directional assignment and therefore provide a reliable basis for the simulation and design of devices. © The Author(s) 2019
Fingerprints of carbon defects in vibrational spectra of gallium nitride (GaN) consider-ing the isotope effect
This work examines the carbon defects associated with recently reported and
novel peaks of infrared (IR) absorption and Raman scattering appearing in GaN
crystals at carbon () doping in the range of concentrations from
to . 14 unique vibrational modes of defects
are observed in GaN samples grown by hydride vapor phase epitaxy (HVPE) and
then compared with defect properties predicted from first-principles
calculations. The vibrational frequency shift in two enriched samples
related to the effect of the isotope mass indicates six distinct configurations
of the carbon-containing point defects. The effect of the isotope replacement
is well reproduced by the density functional theory (DFT) calculations.
Specific attention is paid to the most pronounced defects, namely tri-carbon
complexes() and carbon substituting for nitrogen . The position
of the transition level (+/0) in the bandgap found for defects by
DFT at 1.1 eV above the valence band maximum, suggest that
provides compensation of . defects are observed to be
prominent, yet have high formation energies in DFT calculations. Regarding
defects, it is shown that the host Ga and N atoms are involved in the
defect's delocalized vibrations and significantly affect the isotopic frequency
shift. Much more faint vibrational modes are found from di-atomic carbon-carbon
and carbon-hydrogen (C-H) complexes. Also, we note changes of vibrational mode
intensities of , , C-H, and defects in the IR
absorption spectra upon irradiation in the defect-related UV/visible absorption
range. Finally, it is demonstrated that the resonant enhancement of the Raman
process in the range of defect absorption above 2.5 eV enables the detection of
defects at carbon doping concentrations as low as
Recommended from our members
Characterization of Silicon Crystals Grown from Melt in a Granulate Crucible
The growth of silicon crystals from a melt contained in a granulate crucible significantly differs from the classical growth techniques because of the granulate feedstock and the continuous growth process. We performed a systematic study of impurities and structural defects in several such crystals with diameters up to 60 mm. The possible origin of various defects is discussed and attributed to feedstock (concentration of transition metals), growth setup (carbon concentration), or growth process (dislocation density), showing the potential for further optimization. A distinct correlation between crystal defects and bulk carrier lifetime is observed. A bulk carrier lifetime with values up to 600 μs on passivated surfaces of dislocation-free parts of the crystal is currently achieved
Recommended from our members
Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates—A quantitative model
We study the homoepitaxial growth of β-Ga2O3 (100) grown by metal-organic vapour phase as dependent on miscut-angle vs. the c direction. Atomic force microscopy of layers grown on substrates with miscut-angles smaller than 2° reveals the growth proceeding through nucleation and growth of two-dimensional islands. With increasing miscut-angle, step meandering and finally step flow growth take place. While step-flow growth results in layers with high crystalline perfection, independent nucleation of two-dimensional islands causes double positioning on the (100) plane, resulting in twin lamellae and stacking mismatch boundaries. Applying nucleation theory in the mean field approach for vicinal surfaces, we can fit experimentally found values for the density of twin lamellae in epitaxial layers as dependent on the miscut-angle. The model yields a diffusion coefficient for Ga adatoms of D = 7 × 10−9 cm2 s−1 at a growth temperature of 850 °C, two orders of magnitude lower than the values published for GaAs
Deuteron photodisintegration cross-sections 50-155 MeV
The study of the photodisintegration of the deuteron should be a rewarding area over the next few years both as a result of the increased sophistication of recent theoretical treatments and also because of the potential, which has only just begun to be realised, of much more accurate and reliable photoreaction data
Distinction between the Poole-Frenkel and tunneling models of electric field-stimulated carrier emission from deep levels in semiconductors
The enhancement of the emission rate of charge carriers from deep-level defects in electric field is routinely used to determine the charge state of the defects. However, only a limited number of defects can be satisfactorily described by the Poole-Frenkel theory. An electric field dependence different from that expected from the Poole-Frenkel theory has been repeatedly reported in the literature, and no unambiguous identification of the charge state of the defect could be made. In this article, the electric field dependencies of emission of carriers from DX centers in AlxGa1-xAs:Te, Cu pairs in silicon, and Ge:Hg have been studied applying static and terahertz electric fields, and analyzed by using the models of Poole-Frenkel and phonon assisted tunneling. It is shown that phonon assisted tunneling and Poole-Frenkel emission are two competitive mechanisms of enhancement of emission of carriers, and their relative contribution is determined by the charge state of the defect and by the electric-field strength. At high-electric field strengths carrier emission is dominated by tunneling independently of the charge state of the impurity. For neutral impurities, where Poole-Frenkel lowering of the emission barrier does not occur, the phonon assisted tunneling model describes well the experimental data also in the low-field region. For charged impurities the transition from phonon assisted tunneling at high fields to Poole-Frenkel effect at low fields can be traced back. It is suggested that the Poole-Frenkel and tunneling models can be distinguished by plotting logarithm of the emission rate against the square root or against the square of the electric field, respectively. This analysis enables one to unambiguously determine the charge state of a deep-level defect
Microstructural design for mechanical and electrical properties of Spark Plasma Sintered Al2O3-SiC nanocomposites
[EN] Al2O3-17 vol.% SiC nanocomposites were prepared by powder mixture of submicrosized alpha-Al2O3, nanosized gamma-Al2O3 and different nanosized beta-SiC. Materials were sintered by spark plasma sintering (SPS) technique at two temperatures (1400-1550 degrees C) and their electrical conductivity and mechanical properties were investigated. High-density composites have been achieved even at the lowest sintering temperatures and the microstructure characterization shows SiC particles located both within the Al2O3 matrix grains and/or at the Al2O3 grain boundaries.
It has been demonstrated that microstructure tailoring is possible by suitable selection of starting materials and fast sintering by SPS. Accurate design of nanocomposites microstructures allows obtaining moderately conductive (<100 Omega cm) or insulating (10(8) Omega cm) materials while the chemical composition is similar. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.Financial support of this work by the European Commission is gratefully acknowledged (IP Nanoker P3-CT-2005-515784). A. Borrell acknowledges the Spanish Ministry of Science and Innovation for Ph.D. grant (MAT2006-01783).Borrell Tomás, MA.; Alvarez, I.; Torrecillas, R.; Rocha, VG.; Fernandez, A. (2012). Microstructural design for mechanical and electrical properties of Spark Plasma Sintered Al2O3-SiC nanocomposites. Materials Science and Engineering: A. 534:693-698. https://doi.org/10.1016/j.msea.2011.12.032S69369853
Two-proton correlations from 158 AGeV Pb+Pb central collisions
The two-proton correlation function at midrapidity from Pb+Pb central
collisions at 158 AGeV has been measured by the NA49 experiment. The results
are compared to model predictions from static thermal Gaussian proton source
distributions and transport models RQMD and VENUS. An effective proton source
size is determined by minimizing CHI-square/ndf between the correlation
functions of the data and those calculated for the Gaussian sources, yielding
3.85 +-0.15(stat.) +0.60-0.25(syst.) fm. Both the RQMD and the VENUS model are
consistent with the data within the error in the correlation peak region.Comment: RevTeX style, 6 pages, 4 figures, 1 table. More discussion are added
about the structure on the tail of the correlation function. The systematic
error is revised. To appear in Phys. Lett.
Experimental Study of the Shortest Reset Word of Random Automata
In this paper we describe an approach to finding the shortest reset word of a
finite synchronizing automaton by using a SAT solver. We use this approach to
perform an experimental study of the length of the shortest reset word of a
finite synchronizing automaton. The largest automata we considered had 100
states. The results of the experiments allow us to formulate a hypothesis that
the length of the shortest reset word of a random finite automaton with
states and 2 input letters with high probability is sublinear with respect to
and can be estimated as $1.95 n^{0.55}.
Event-by-event fluctuations of average transverse momentum in central Pb+Pb collisions at 158 GeV per nucleon
We present first data on event-by-event fluctuations in the average
transverse momentum of charged particles produced in Pb+Pb collisions at the
CERN SPS. This measurement provides previously unavailable information allowing
sensitive tests of microscopic and thermodynamic collision models and to search
for fluctuations expected to occur in the vicinity of the predicted QCD phase
transition. We find that the observed variance of the event-by-event average
transverse momentum is consistent with independent particle production modified
by the known two-particle correlations due to quantum statistics and final
state interactions and folded with the resolution of the NA49 apparatus. For
two specific models of non-statistical fluctuations in transverse momentum
limits are derived in terms of fluctuation amplitude. We show that a
significant part of the parameter space for a model of isospin fluctuations
predicted as a consequence of chiral symmetry restoration in a non-equilibrium
scenario is excluded by our measurement.Comment: 6 pages, 2 figures, submitted to Phys. Lett.
- …