7 research outputs found
Recommended from our members
Analysis of warm prestress data
Loading a cracked structure at elevated temperature, or warm prestressing (WPS), enhances its fracture resistance at a lower temperature. Five data sets, comprising 119 unclad pressure vessel steel specimens, were combined to derive correlations for WPS-enhanced fracture toughness (K{sub Ifrac}) in the absence of ductile tearing. New WPS test results for 27 surface flawed specimens, eight subclad flawed specimens, and five strain-aged specimens are discussed. K{sub Ifrac} exceeded non-WPS fracture toughness, K{sub Ic}, for all experiments. The WPS data showed that no specimens failed while K was decreasing, and that at least an additional seven percent additional reloading from the minimum value of applied K{sub I} took place prior to final fracture. The data included complete and partial unloading after WPS prior to final fracture. Crack tip 3-dimensional elastic-plastic finite element (3DEPFE) analysis was performed to support statistical analysis of the data. Regression models were compared with the Chell WPS model. Crack tip 3DEPFE analysis indicated that partially unloaded and completely unloaded data should be treated separately, and that the amount of unloading is unimportant for partially unloaded data. The regression models, which use K{sub I} at WPS (K{sub Iwps}) and K{sub Ic} as independent variables, better represented the WPS benefit than did the more complicated Chell model. An adequate accounting was made for constraint in the WPS experiments. The subclad flaw data support the use of the partial unload regression model, provided that some care is taken to represent the effect of intact cladding if present. The effect of strain aging at or below 260 C (500 F) on WPS benefit was of no consequence for the pressure vessel steels and WPS temperatures used to derive the regression models. The presence of ductile tearing precludes the use of the regression models. The regression model for partial unloading accurately predicted the behavior of full scale pressure vessel WPS experiments. All but one of the 174 experiments considered lie above the lower 2{sigma} estimate of the regressions. The experiments all supported Type I WPS, i.e., there was no fracture during cooling until reloading occurred. However, the regression equations apply to the reload, and are inapplicable to Type I WPS
Recommended from our members
Analysis of unclad and sub-clad semi-elliptical flaws in pressure vessel steels
This study was conducted to support warm prestressing experiments on unclad and sub-clad flawed beams loaded in pure bending. Two cladding yield strengths were investigated: 0.6 Sy and 0.8 Sy, where Sy is the yield strength of the base metal. Cladding and base metal were assumed to be stress free at the stress relief temperature for the 3D elastic-plastic finite element analysis used to model the experiments. The model results indicated that when cooled from the stress relief temperature, the cladding was put in tension due to its greater coefficient of thermal expansion. When cooled, the cladding exhibited various amounts of tensile yielding. The degree of yielding depended on the amount of cooling and the strength of the cladding relative to that of the base metal. When subjected to tensile bending stress, the sub-clad flaw elastic-plastic stress intensity factor, K{sub I}(J), was at first dominated by crack closing force due to tensile yielding in the cladding. Thus, imposed loads initially caused no increase in K{sub I}(J) near the clad-base interface. However, K{sub I}(J) at the flaw depth was little affected. When the cladding residual stress was overcome, K{sub I}(J) gradually increased until the cladding began to flow. Thereafter, the rate at which K{sub I}(J) increased with load was the same as that of an unclad beam. A plastic zone corrected K{sub I} approximation for the unclad flaw was found by the superposition of standard Newman and Raju solutions with those due to a cladding crack closure force approximated by the Kaya and Erdogan solution. These elastic estimates of the effect of cladding in reducing the crack driving force were quite in keeping with the 3D elastic-plastic finite element solution for the sub-clad flaw. The results were also compared with the analysis of clad beam experiments by Keeney and the conclusions by Miyazaki, et al. A number of sub-clad flaw specimens not subjected to warm prestressing were thought to have suffered degraded toughness caused by locally intensified strain aging embrittlement (LISAE) due to welding over the preexisting flaw