2,443 research outputs found
On Time Series Analysis of Public Health and Biomedical Data
A time series is a sequence of observations made over time. Examples in public health include daily ozone concentrations, weekly admissions to an emergency department or annual expenditures on health care in the United States. Time series models are used to describe the dependence of the response at each time on predictor variables including covariates and possibly previous values in the series. Time series methods are necessary to account for the correlation among repeated responses over time. This paper gives an overview of time series ideas and methods used in public health research
Ground-Shaking Scenarios and Urban Risk Evaluation of Barcelona using the Risk-UE Capacity Spectrum Based Method
The Capacity Spectrum Based Method (CSBM) developed in the framework of the European project Risk-UE has been applied to evaluate the seismic risk for the city of Barcelona, Spain. Accordingly, four damage states are defined for the buildings, the action is expressed in terms of spectral values and the seismic quality of the buildings, that is, their vulnerability, is evaluated by means of capacity spectra. The probabilities of the damage states are obtained considering a lognormal probability distribution. The most relevant seismic risk evaluation results obtained for Barcelona, Spain, are given in the article as scenarios of expected losses
Stability and aggregation of ranked gene lists
Ranked gene lists are highly instable in the sense that similar measures of differential gene expression may yield very different rankings, and that a small change of the data set usually affects the obtained gene list considerably. Stability issues have long been under-considered in the literature, but they have grown to a hot topic in the last few years, perhaps as a consequence of the increasing skepticism on the reproducibility and clinical applicability of molecular research findings. In this article, we review existing approaches for the assessment of stability of ranked gene lists and the related problem of aggregation, give some practical recommendations, and warn against potential misuse of these methods. This overview is illustrated through an application to a recent leukemia data set using the freely available Bioconductor package GeneSelector
Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method
The vulnerability index method, in its version developed in the framework of the European project Risk-UE, has been adapted and applied in this article, to evaluate the seismic risk for the city of Barcelona (Spain) through a GIS based tool. According to this method, which defines five damage states, the action is expressed in terms of the macroseismic intensity and the seismic quality of the buildings by means of a vulnerability index. The probabilities of damage states are obtained considering a binomial or beta-equivalent probability distribution. The most relevant seismic risk evaluation results obtained, for current buildings and monuments of Barcelona, are given in the article as scenarios of expected losses
Physico-chemical foundations underpinning microarray and next-generation sequencing experiments
Hybridization of nucleic acids on solid surfaces is a key process involved in high-throughput technologies such as microarrays and, in some cases, next-generation sequencing (NGS). A physical understanding of the hybridization process helps to determine the accuracy of these technologies. The goal of a widespread research program is to develop reliable transformations between the raw signals reported by the technologies and individual molecular concentrations from an ensemble of nucleic acids. This research has inputs from many areas, from bioinformatics and biostatistics, to theoretical and experimental biochemistry and biophysics, to computer simulations. A group of leading researchers met in Ploen Germany in 2011 to discuss present knowledge and limitations of our physico-chemical understanding of high-throughput nucleic acid technologies. This meeting inspired us to write this summary, which provides an overview of the state-of-the-art approaches based on physico-chemical foundation to modeling of the nucleic acids hybridization process on solid surfaces. In addition, practical application of current knowledge is emphasized
Performance evaluation of commercial miRNA expression array platforms
<p>Abstract</p> <p>Background</p> <p>microRNAs (miRNA) are short, endogenous transcripts that negatively regulate the expression of specific mRNA targets. The relative abundance of miRNAs is linked to function <it>in vivo </it>and miRNA expression patterns are potentially useful signatures for the development of diagnostic, prognostic and therapeutic biomarkers.</p> <p>Finding</p> <p>We compared the performance characteristics of four commercial miRNA array technologies and found that all platforms performed well in separate measures of performance.</p> <p>Conclusions</p> <p>The Ambion and Agilent platforms were more accurate, whereas the Illumina and Exiqon platforms were more specific. Furthermore, the data analysis approach had a large impact on the performance, predominantly by improving precision.</p
Comprehensive methylome map of lineage commitment from haematopoietic progenitors.
Epigenetic modifications must underlie lineage-specific differentiation as terminally differentiated cells express tissue-specific genes, but their DNA sequence is unchanged. Haematopoiesis provides a well-defined model to study epigenetic modifications during cell-fate decisions, as multipotent progenitors (MPPs) differentiate into progressively restricted myeloid or lymphoid progenitors. Although DNA methylation is critical for myeloid versus lymphoid differentiation, as demonstrated by the myeloerythroid bias in Dnmt1 hypomorphs, a comprehensive DNA methylation map of haematopoietic progenitors, or of any multipotent/oligopotent lineage, does not exist. Here we examined 4.6 million CpG sites throughout the genome for MPPs, common lymphoid progenitors (CLPs), common myeloid progenitors (CMPs), granulocyte/macrophage progenitors (GMPs), and thymocyte progenitors (DN1, DN2, DN3). Marked epigenetic plasticity accompanied both lymphoid and myeloid restriction. Myeloid commitment involved less global DNA methylation than lymphoid commitment, supported functionally by myeloid skewing of progenitors following treatment with a DNA methyltransferase inhibitor. Differential DNA methylation correlated with gene expression more strongly at CpG island shores than CpG islands. Many examples of genes and pathways not previously known to be involved in choice between lymphoid/myeloid differentiation have been identified, such as Arl4c and Jdp2. Several transcription factors, including Meis1, were methylated and silenced during differentiation, indicating a role in maintaining an undifferentiated state. Additionally, epigenetic modification of modifiers of the epigenome seems to be important in haematopoietic differentiation. Our results directly demonstrate that modulation of DNA methylation occurs during lineage-specific differentiation and defines a comprehensive map of the methylation and transcriptional changes that accompany myeloid versus lymphoid fate decisions
- …