21 research outputs found

    Novel Green Nanotechnologies Applied in Environmental Protection and Health

    No full text
    Today, humanity is facing serious problems due to the environmental pollution [...

    Surface species of the nematic mixture E7 obtained by electrochemical insertion of Li

    No full text
    We studied here the influence of Li+ ions on the benzene rings of nematic mixture E7, which is electrochemically adsorbed onto gold electrode surface, to highlight the ability of this mixture for the applications in the field of the rechargeable Li+-ion batteries. Raman spectra support the changes observed in electrochemical analyses while contact angle measurements show that wetting properties of E7 layer were modified after deposition of this mixture onto gold support and the doping with Li+ ions

    Degradation of Losartan Potassium Highlighted by Correlated Studies of Photoluminescence, Infrared Absorption Spectroscopy and Dielectric Spectroscopy

    No full text
    In this paper, new results on the degradation of losartan potassium (LP, (1)), in the absence and presence of excipients, which was induced by UV light, the acid character of phosphate buffer solution (PBS) and alkaline medium, respectively, are reported through correlated studies of FTIR spectroscopy, photoluminescence and dielectric spectroscopy. The photoluminescence (PL) spectra of LP and the drug marked under the name Lorista (LO) are characterized by intense emission bands, peaking at 378 nm and 380 nm, respectively, accompanied by low intensity bands with a maximum at ~450–460 nm. Photodegradation of LO in a solid state is evidenced by a decrease in the intensity of the PL band at 380 nm, a variation that originates both in the adsorption of water vapors from the air and in the interaction of LP with excipients such as cornstarch, silicon dioxide and cellulose. The LP-water interaction is described, taking into account the main electrical parameters, i.e., complex dielectric permittivity and electrical conductivity. Photodegradation of LP and LO also induces an increase in the intensity of the emission band, at ~450–460 nm. The influence of acid and alkaline medium on the LO degradation is analyzed using phosphate buffer (PBS) and NaOH solutions, respectively. In both cases, a decrease in the intensity of the PL band, at 380 nm, is reported. The intensity diminution of the PL spectra of NaOH-reacted LP and LO is the result of the formation of the photodegradation product N-methanolamide-{[2′-(1H-tetrazol-5-yl)(1,1′-biphenyl)-4-yl]methyl} (2). This compound was proven by the studies of FTIR spectroscopy achieved on LP and NaOH-reacted LP. The appearance of the IR band at 1740 cm−1 and the increase in the absorbance in the IR band at 1423 cm−1 indicate that the photodegradation product (2) contains the C=O and C-OH functional groups

    Silver nanoparticles decorated ZnO–CuO core–shell nanowire arrays with low water adhesion and high antibacterial activity

    No full text
    Abstract Nanostructured surfaces based on silver nanoparticles decorated ZnO–CuO core–shell nanowire arrays, which can assure protection against various environmental factors such as water and bacteria were developed by combining dry preparation techniques namely thermal oxidation in air, radio frequency (RF) magnetron sputtering and thermal vacuum evaporation. Thus, high-aspect-ratio ZnO nanowire arrays were grown directly on zinc foils by thermal oxidation in air. Further ZnO nanowires were coated with a CuO layer by RF magnetron sputtering, the obtained ZnO–CuO core–shell nanowires being decorated with Ag nanoparticles by thermal vacuum evaporation. The prepared samples were comprehensively assessed from morphological, compositional, structural, optical, surface chemistry, wetting and antibacterial activity point of view. The wettability studies show that native Zn foil and ZnO nanowire arrays grown on it are featured by a high water droplet adhesion while ZnO–CuO core–shell nanowire arrays (before and after decoration with Ag nanoparticles) reveal a low water droplet adhesion. The antibacterial tests carried on Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium) emphasize that the nanostructured surfaces based on nanowire arrays present excellent antibacterial activity against both type of bacteria. This study proves that functional surfaces obtained by relatively simple and highly reproducible preparation techniques that can be easily scaled to large area are very attractive in the field of water repellent coatings with enhanced antibacterial function

    Burdock-Derived Composites Based on Biogenic Gold, Silver Chloride and Zinc Oxide Particles as Green Multifunctional Platforms for Biomedical Applications and Environmental Protection

    No full text
    Green nanotechnology is a rapidly growing field linked to using the principles of green chemistry to design novel nanomaterials with great potential in environmental and health protection. In this work, metal and semiconducting particles (AuNPs, AgClNPs, ZnO, AuZnO, AgClZnO, and AuAgClZnO) were phytosynthesized through a “green” bottom-up approach, using burdock (Arctium lappa L.) aqueous extract. The morphological (SEM/TEM), structural (XRD, SAED), compositional (EDS), optical (UV–Vis absorption and FTIR spectroscopy), photocatalytic, and bio-properties of the prepared composites were analyzed. The particle size was determined by SEM/TEM and by DLS measurements. The phytoparticles presented high and moderate physical stability, evaluated by zeta potential measurements. The investigation of photocatalytic activity of these composites, using Rhodamine B solutions’ degradation under solar light irradiation in the presence of prepared powders, showed different degradation efficiencies. Bioevaluation of the obtained composites revealed the antioxidant and antibacterial properties. The tricomponent system AuAgClZnO showed the best antioxidant activity for capturing ROS and ABTS•+ radicals, and the best biocidal action against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The “green” developed composites can be considered potential adjuvants in biomedical (antioxidant or biocidal agents) or environmental (as antimicrobial agents and catalysts for degradation of water pollutants) applications

    Rod-like cyanophenyl probe molecules nanoconfined to oxide particles: Density of adsorbed surface species

    No full text
    Surface layers have already been observed by broadband dielectric spectroscopy for composite systems formed by adsorption of rod-like cyanophenyl derivates as probe molecules on the surface of oxide particles. In this work, features of the surface layer are reported; samples with different amounts of the probe molecules adsorbed onto oxide (nano) particles were prepared in order to study their interactions with the surface. Thermogravimetric analysis (TGA) was applied to analyze the amount of loaded probe molecules. The density of the surface species n(s) was introduced and its values were estimated from quantitative Fourier transform infrared spectroscopy (FTIR) coupled with TGA. This parameter allows discriminating the composites into several groups assuming a similar interaction of the probe molecules with the hosts of a given group. An influence factor H is further proposed as the ratio of the number of molecules in the surface layer showing a glassy dynamics and the number of molecules adsorbed tightly on the surface of the support: It was found for aerosil composites and used for calculating the maximum filling degree of partially filled silica MCM-41 composites showing only one dielectric process characteristic for glass-forming liquids and a bulk behavior for higher filling degrees

    The Influence of the Ceramic Nanoparticles on the Thermoplastic Polymers Matrix: Their Structural, Optical, and Conductive Properties

    No full text
    This paper prepared composites under the free membranes form that are based on thermoplastic polymers of the type of polyurethane (TPU) and polyolefin (TPO), which are blended in the weight ratio of 2:1, and ceramic nanoparticles (CNs) such as BaSrTiO3 and SrTiO3. The structural, optical, and conductive properties of these new composite materials are reported. The X-ray diffraction studies highlight a cubic crystalline structure of these CNs. The main variations in the vibrational properties of the TPU:TPO blend induced by CNs consist of the following: (i) the increase in the intensity of the Raman line of 1616 cm−1; (ii) the down-shift of the IR band from 800 to 791 cm−1; (iii) the change of the ratio between the absorbance of IR bands localized in the spectral range 950–1200 cm−1; and (iv) the decrease in the absorbance of the IR band from 1221 cm−1. All these variations were correlated with a preferential adsorption of thermoplastic polymers on the CNs surface. A photoluminescence (PL) quenching process of thermoplastic polymers is demonstrated to occur in the presence of CNs. The anisotropic PL measurements have highlighted a change in the angle of the binding of the TPU:TPO blend, which varies from 23.7° to ≈49.3° and ≈53.4°, when the concentration of BaSrTiO3 and SrTiO3 CNs, respectively, is changed from 0 to 25 wt. %. Using dielectric spectroscopy, two mechanisms are invoked to take place in the case of the composites based on TPU:TPO blends and CNs, i.e., one regarding the type of the electrical conduction and another specifying the dielectric–dipolar relaxation processes

    Cytotoxicity, Antioxidant, Antibacterial, and Photocatalytic Activities of ZnO–CdS Powders

    No full text
    In this work, ZnO–CdS composite powders synthesized by a simple chemical precipitation method were thoroughly characterized. The morphological, structural, compositional, photocatalytical, and biological properties of the prepared composites were investigated in comparison with those of the pristine components and correlated with the CdS concentration. ZnO–CdS composites contain flower-like structures, their size being tuned by the CdS amount added during the chemical synthesis. The photocatalytic activity of the composites was analyzed under UV irradiation using powders impregnated with methylene blue; the tests confirming that the presence of CdS along the ZnO in composites can improve the dye discoloration. The biological properties such as antioxidant capacity, antibacterial activity, and cytotoxicity of the ZnO, CdS, and ZnO–CdS composites were evaluated. Thus, the obtained composites presented medium antioxidant effect, biocidal activity against Escherichia coli, and no toxicity (at concentrations less than 0.05 mg/mL for composites with a low CdS amount) for human fibroblast cells. Based on these results, such composites can be used as photocatalytic and/or biocidal additives for photoactive coatings, paints, or epoxy floors, which in their turn can provide a cleaner and healthier environment
    corecore