13 research outputs found

    Trace Element Patterns in Shells of Mussels (Bivalvia) Allow to Distinguish between Fresh- and Brackish-Water Coastal Environments of the Subarctic and Boreal Zone

    Get PDF
    The accumulation of trace metals in the shells of bivalves allows quantitative assessments of environmental pollution and helps to reconstruct paleo aquatic environments. However, the understanding on how marine and freshwater mollusks control the level of trace elements in their shells remains very limited. Here, we compared the trace element composition of marine and freshwater bivalves from boreal and subarctic habitats, using examples of widely distributed species of marine (Mytilus edulis, M. trossulus) and freshwater (Anodonta anatina, Unio sp., Beringiana beringiana) mussels. Sizable differences in several trace element concentrations were detected between different species, depending on their environmental niches. A multiparametric statistical treatment of the shell’s elemental composition allowed to distinguish the impact of external factors (water and sediment chemical composition) from active metabolic (biological) control. In particular, the obtained results demonstrated that Ba:Ca and Pb:Ca ratios in mussels’ shells are closely related to the primary productivity of aquatic ecosystems. The Mn:Ca ratio allowed to constrain the environmental conditions of mussels’ species depending on the trophic state of inhabited waterbody. Overall, the marine mussels exhibited stronger biological control of trace element accumulation, whereas trace element pattern in shells of freshwater mussels was chiefly controlled by environmental factors. The obtained results might help to use the trace element composition of bivalves in distinguishing marine and freshwater habitats of mollusks in paleo environments

    Transient Exciplex Formation Electron Transfer Mechanism

    No full text
    Transient exciplex formation mechanism of excited-state electron transfer reactions is analyzed in terms of experimental data on thermodynamics and kinetics of exciplex formation and decay. Experimental profiles of free energy, enthalpy, and entropy for transient exciplex formation and decay are considered for several electron transfer reactions in various solvents. Strong electronic coupling in contact pairs of reactants causes substantial decrease of activation energy relative to that for conventional long-range ET mechanism, especially for endergonic reactions, and provides the possibility for medium reorganization concatenated to gradual charge shift in contrast to conventional preliminary medium and reactants reorganization. Experimental criteria for transient exciplex formation (concatenated) mechanism of excited-state electron transfer are considered. Available experimental data show that this mechanism dominates for endergonic ET reactions and provides a natural explanation for a lot of known paradoxes of ET reactions

    Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals

    No full text
    The review considers the influence of Bloch surface waves on the optical and magneto-optical effects observed in photonic crystals; for example, the Goos–HĂ€nchen effect, the Faraday effect, optical trapping and so on. Prospects for using Bloch surface waves for spatial light modulation, for controlling the polarization of light, for optical trapping and control of micro-objects are discussed

    The Role of Transcription Factor PPAR-γ in the Pathogenesis of Psoriasis, Skin Cells, and Immune Cells

    No full text
    The peroxisome proliferator-activated receptor PPAR-γ is one of three PPAR nuclear receptors that act as ligand-activated transcription factors. In immune cells, the skin, and other organs, PPAR-γ regulates lipid, glucose, and amino acid metabolism. The receptor translates nutritional, pharmacological, and metabolic stimuli into the changes in gene expression. The activation of PPAR-γ promotes cell differentiation, reduces the proliferation rate, and modulates the immune response. In the skin, PPARs also contribute to the functioning of the skin barrier. Since we know that the route from identification to the registration of drugs is long and expensive, PPAR-γ agonists already approved for other diseases may also represent a high interest for psoriasis. In this review, we discuss the role of PPAR-γ in the activation, differentiation, and proliferation of skin and immune cells affected by psoriasis and in contributing to the pathogenesis of the disease. We also evaluate whether the agonists of PPAR-γ may become one of the therapeutic options to suppress the inflammatory response in lesional psoriatic skin and decrease the influence of comorbidities associated with psoriasis

    Multi-Omics Analysis of Glioblastoma Cells’ Sensitivity to Oncolytic Viruses

    No full text
    Oncolytic viruses have gained momentum in the last decades as a promising tool for cancer treatment. Despite the progress, only a fraction of patients show a positive response to viral therapy. One of the key variable factors contributing to therapy outcomes is interferon-dependent antiviral mechanisms in tumor cells. Here, we evaluated this factor using patient-derived glioblastoma multiforme (GBM) cultures. Cell response to the type I interferons’ (IFNs) stimulation was characterized at mRNA and protein levels. Omics analysis revealed that GBM cells overexpress interferon-stimulated genes (ISGs) and upregulate their proteins, similar to the normal cells. A conserved molecular pattern unambiguously differentiates between the preserved and defective responses. Comparing ISGs’ portraits with titration-based measurements of cell sensitivity to a panel of viruses, the “strength” of IFN-induced resistance acquired by GBM cells was ranked. The study demonstrates that suppressing a single ISG and encoding an essential antiviral protein, does not necessarily increase sensitivity to viruses. Conversely, silencing IFIT3 and PLSCR1 genes in tumor cells can negatively affect the internalization of vesicular stomatitis and Newcastle disease viruses. We present evidence of a complex relationship between the interferon response genes and other factors affecting the sensitivity of tumor cells to viruses

    Fusion of Lysostaphin to an Albumin Binding Domain Prolongs Its Half-Life and Bactericidal Activity in the Systemic Circulation

    No full text
    Antibacterial lysins are promising proteins that are active against both antibiotic-susceptible and antibiotic-resistant bacterial strains. However, a major limitation of antibacterial lysins is their fast elimination from systemic circulation. PEGylation increases the plasma half-life of lysins but renders them inactive. Here we report the construction of a fusion protein of lysostaphin, a potent anti-staphylococcal lysin, and an albumin-binding domain from streptococcal protein G. The resulting fusion protein was less active than the parent enzyme lysostaphin, but it still retained significant antibacterial activity even when bound to serum albumin. The terminal half-life of the fusion protein in rats was five-fold greater than that of lysostaphin (7.4 vs. 1.5 h), and the area under the curve increased more than 115 times. Most importantly, this increase in systemic circulation time compensated for the decrease in activity. The plasma from rats that received an injection of the fusion protein retained bactericidal activity for up to 7 h, while plasma from rats that received plain lysostaphin lacked any detectable activity after 4 h. To the best of our knowledge, this is the first report of an antibacterial lysin with both improved pharmacokinetic parameters and prolonged bactericidal activity in the systemic circulation

    The Influence of Dimerization on the Pharmacokinetics and Activity of an Antibacterial Enzyme Lysostaphin

    No full text
    The increasing prevalence of antibiotic-resistant strains of pathogenic bacteria is a major healthcare problem. Antibacterial lysins are enzymes that cleave the peptidoglycan of the bacterial cell wall. These proteins hold potential as a supplement or an alternative to traditional antibiotics since they are active against antibiotic resistant strains. However, antibacterial lysins are rapidly eliminated from the systemic circulation, which limits their application. Dimerization of an anti-pneumococcal lysin Cpl-1 has been demonstrated to decrease the clearance rate of this protein in mice. In the present work, we constructed a dimer of an anti-staphylococcal lysin lysostaphin by fusing it with an anti-parallel α-helical dimerization domain. Lysostaphin dimer had a more favorable pharmacokinetic profile with increased terminal half-life and area under the curve (AUC) values compared to monomeric lysostaphin. However, the staphylolytic activity of dimerized lysostaphin was decreased. This decrease in activity was likely caused by the dimerization; since the catalytic efficacy of lysostaphin dimer towards pentaglycine peptide was unaltered. Our results demonstrate that, although dimerization is indeed beneficial for the pharmacokinetics of antibacterial lysins, this approach might not be suitable for all lysins, as it can negatively affect the lysin activity
    corecore