4 research outputs found

    Origin and Post-Glacial Dispersal of Mitochondrial DNA Haplogroups C and D in Northern Asia

    Get PDF
    More than a half of the northern Asian pool of human mitochondrial DNA (mtDNA) is fragmented into a number of subclades of haplogroups C and D, two of the most frequent haplogroups throughout northern, eastern, central Asia and America. While there has been considerable recent progress in studying mitochondrial variation in eastern Asia and America at the complete genome resolution, little comparable data is available for regions such as southern Siberia – the area where most of northern Asian haplogroups, including C and D, likely diversified. This gap in our knowledge causes a serious barrier for progress in understanding the demographic pre-history of northern Eurasia in general. Here we describe the phylogeography of haplogroups C and D in the populations of northern and eastern Asia. We have analyzed 770 samples from haplogroups C and D (174 and 596, respectively) at high resolution, including 182 novel complete mtDNA sequences representing haplogroups C and D (83 and 99, respectively). The present-day variation of haplogroups C and D suggests that these mtDNA clades expanded before the Last Glacial Maximum (LGM), with their oldest lineages being present in the eastern Asia. Unlike in eastern Asia, most of the northern Asian variants of haplogroups C and D began the expansion after the LGM, thus pointing to post-glacial re-colonization of northern Asia. Our results show that both haplogroups were involved in migrations, from eastern Asia and southern Siberia to eastern and northeastern Europe, likely during the middle Holocene

    Atmospheric Air Pollution by Stationary Sources in Ulan-Ude (Buryatia, Russia) and Its Impact on Public Health

    No full text
    For the first time in the territory of the Russian Far East, a study related to the establishment of correlations between air quality and public health in Ulan-Ude (Buryatia, Russia) was carried out. This study is based on the analysis of official medical statistics on morbidity over several years, the data on the composition and volume of emissions of harmful substances into the air from various stationary sources, and laboratory measurements of air pollutants in different locations in Ulan-Ude. This study confirmed that the morbidity of the population in Ulan-Ude has been increasing every year and it is largely influenced by air pollutants, the main of which are benzo(a)pyrene, suspended solids, PM2.5, PM10, and nitrogen dioxide. It was found that the greatest contribution to the unfavorable environmental situation is made by three types of stationary sources: large heating networks, autonomous sources (enterprises and small businesses), and individual households. The main air pollutants whose concentrations exceed the limits are benzo(a)pyrene, formaldehyde, suspended particles PM2.5, PM10, and nitrogen dioxide. A comprehensive assessment of the content of various pollutants in the atmospheric air showed that levels of carcinogenic and non-carcinogenic risks to public health exceeded allowable levels. Priority pollutants in the atmosphere of Ulan-Ude whose concentrations create unacceptable levels of risk to public health are benzo(a)pyrene, suspended solids, nitrogen dioxide, PM2.5, PM10, formaldehyde, and black carbon. The levels of morbidity in Ulan-Ude were higher than the average for Buryatia by the main disease classes: respiratory organs—by 1.19 times, endocrine system—by 1.25 times, circulatory system—by 1.11 times, eye diseases—by 1.06 times, neoplasms—by 1.47 times, congenital anomalies, and deformations and chromosomal aberrations—by 1.63 times. There is an increase in the incidence of risk-related diseases of respiratory organs and the circulatory system. A strong correlation was found between this growth of morbidity and atmospheric air pollution in Ulan-Ude
    corecore