5 research outputs found

    The use of biotechnology for supplying of plant material for traditional culture of medicinal, rare species Arnica montana L.

    Get PDF
    Taking into account the importance of Arnica montana, the attempts to improve the culture technologies are justified. Our study had the aim to optimize in vitro plant multiplication and growth as a source of plants for traditional culture in this species. Aseptic germinated seedlings were used as explants, apical meristem being the origin of the direct morphogenesis process. For induction of regeneration, to promote plant growth and rooting, we used some combination of growth factors and supplements as ascorbic acid, glutamine, PVP and active charcoal added in culture media based on MS formula. We improved the efficiency of micropropagation, the best values were recorded on variant supplemented with PVP –.7 regenerants/explant in the first 4 weeks and increasing at 17/ initial explant ( mean 14.62) after 8 weeks. Concerning the germination capacity of the seeds scored after 2 weeks in sterile condition, the rate was 47.76 and in non-sterile conditions, the rate varied depending of the substrate used. Comparing to the plants obtained through traditional seeds germination, in vitro plants grew faster and were more vigourously. The micropropagation protocol in Arnica montana L. allowed us to regenerate healthy, developed and rooted plants in the second subculture cycle. This in vitro methodology can provide plant material for initiation of a conventional culture after acclimatization of the obtained vitroplants

    Ex situ Conservation of Three Endemic and/or Endangered Dianthus Species

    Get PDF
    Within the current context of declining biodiversity, the botanical gardens play an essential role in its conservation. Dianthus callizonus, D. glacialis ssp. gelidus and D. spiculifolius are the species that we seek to preserve in "Alexandru Borza" Botanical Garden of Cluj-Napoca (Romania). Several replicates were collected for each taxon from different populations in order to avoid the genetic uniformity. The material collected from the natural sites, was planted on a rockery, specially designed for this collection in the Botanical Garden. At the time of planting, each individual was sampled for setting up an in vitro collection and further biochemical and molecular analyses. In case of ex situ outdoor conservation of the three Dianthus species, 80.6% of the individuals collected in the field survived during the first year but the percentage decreased drastically after four years. In the case of in situ collected individuals, as well as in the case of in vitro individuals, D. spiculifolius had the best ability to acclimatize in the Botanical Garden, and D. callizonus presented the lowest number of surviving individuals. The ex vitro acclimatization of the plantlets had 80% efficiency at 10ºC, using three different substrates: soil and pearl stone mix 1/1, soil and sand mix 1/1 and pearl stone. All the three species are preserved in vitro, whereas the plantlets are acclimatized outdoors. Ex situ conservation of these species will have a positive impact on the biodiversity conservation.</p

    Preliminary data regarding genetic diversity of several endangered and endemic Dianthus species from Romania generated by RAPD markers

    No full text
    Conservation of endangered and endemic species of Dianhtus from Romania, requires the investigation of genetic polymorphism in the populations. Preliminary data were obtained by molecular characterization using RAPD markers. DNA amplification with the 9 RAPD primers of the individuals belonging to different populations of D. callizonus, D. giganteus ssp. banaticus, D. glacialis ssp. gelidus, D. henteri, D. nardiformis, D. pratensis ssp. racovitzae, D. spiculifolius and D. tenuifolius revealed low level of polymorphism within and between populations. Several polymorphic RAPD markers were identified being useful for investigation of genetic diversity. Out the 9 primers studied by us, only the primer OPB-07 ensured amplification in all species and primers OPA-13, OPE-04 and 1225 showed positive results in most of the species. The primers 4A-26 and 4A-27 ensured amplification only in D. spiculifolius and the primers 4A-23 and OPM-18 gave no results in none of the species. Butiuc-Keul et al (PDF

    The Impact of Acute Low-Dose Gamma Irradiation on Biomass Accumulation and Secondary Metabolites Production in <i>Cotinus coggygria</i> Scop. and <i>Fragaria × ananassa</i> Duch. Red Callus Cultures

    No full text
    Cotinus coggygria Scop. (smoketree) and Fragaria × ananassa Duch. (strawberry) are two industrially important species due to their composition in bioactive compounds. In this study, we investigated the effects of acute low-dose gamma irradiation (15, 20, 25, 30, 35 and 40 Gy) on two red callus cultures established in smoketree and strawberry. The biomass production, dry weight, content of phenols, flavonoids, monomeric anthocyanins’, index of anthocyanins polymerization and antioxidant activity were evaluated. For the smoketree callus, a negative correlation between irradiation doses and callus biomass accumulation was observed. For the strawberry callus, irradiation did not significantly affect the accumulation of the biomass. An increased dry weight was observed in irradiated smoketree callus, while for treated strawberry callus, a decrease was recorded. Irradiation with 30 Gy was stimulative for polyphenols’ accumulation in both cultures; however, the increase was significant only in the strawberry callus. The flavonoids increased in the 30 Gy strawberry variants, while it significantly decreased in smoketree callus irradiated with 35 and 40 Gy. In irradiated strawberry callus, except for the 25 Gy variant (1.65 ± 0.4 mg C-3-GE/g DW), all treatments caused an increase in anthocyanins’ accumulation. In smoketree, except for the 15 Gy variant (2.14 ± 0.66 mg C-3-GE/g DW), the irradiation determined an increase in anthocyanins synthesis, with the highest value being seen in the 20 Gy variant (2.8 ± 0.94 mg C-3-GE/g DW). According to UPLC-HRMS investigations, an unidentified compound increased by 99% at the 30 Gy dose in strawberry callus, while in smoketree, maslinic acid increased by 51% after irradiation with 40 Gy. The results of this study showed, for the first time, the differential response of two performant callus cultures to low-dose gamma irradiation, a biotechnological method that can be used to stimulate the synthesis of important flavonoids and triterpenes
    corecore