14 research outputs found

    Specific Cerebrovascular Risk Factors, Colon Microbiocenosis and its Correction in Patients Receiving Long-Term Programmed Hemodialysis

    Get PDF
    Introduction: The problem of acute and chronic cerebrovascular disorders in dialysis patients remains the most urgent. Risk factors for cerebrovascular diseases in CKD and dialysis patients can be conditionally divided into “traditional” (arterial hypertension, diabetes mellitus, hypercholesterolemia) and “specific” (associated with renal pathology and dialysis procedures). The spectrum of specific factors of cerebrovascular risk in patients with dialysis stage of the CKD includes specific dialysis factors that form during programmed HD, as well as impaired phosphorus-calcium metabolism and calcification of the arterial microvasculature, increased blood levels of β2-microglobulin, homocysteine, malondialdehyde and superoxide dismutase, a decrease in the level of nitric oxide (II) metabolites, development of nephrogenic anemia and dysfunction of blood cells, malnutrition and dietary features of patients with renal pathology, accumulation of uremic toxins and toxins of intestinal bacteria, etc. Opportunistic gut microorganisms can produce uremic toxins, which are associated with an increased risk of inflammation, increased oxidative stress, and a higher risk of cardiovascular disease (CVD). Description of the spectrum of risk factors for cerebrovascular pathology in dialysis patients and effective control over them seems to be an effective strategy aimed at increasing the duration and quality of life in patients receiving renal replacement therapy. The aim of the investigation was to study the species composition of colon microbiocenosis in patients with CKD receiving programmed HD treatment and to evaluate the effectiveness of its correction using a new immobilized synbiotic. Materials and methods: Samples of colon microbiota from 62 patients undergoing programmed hemodialysis were studied before and after a course of diet therapy that included probiotic components, in particular, the immobilized synbiotic LB-complex L. Isolation of microorganisms was carried out according to our original method; for bacteria identification, a MALDI-TOF Autoflex speed mass spectrometer (Bruker Daltonik, Germany) was used in the Biotyper program mode. The results were assessed using the criteria proposed by the authors and based on the OST 91500.11.0004-2003. The efficacy of the immobilized synbiotic was determined based on the clinical data, questionnaires, and bacteriological tests. Results: In patients receiving programmed hemodialysis (before the start of the diet therapy), chronic moderate inflammation and azotemia were found. Dysbiotic changes in microbiocenosis were revealed in all the examined patients; in the absence or suppression of lacto- and bifidoflora, the number and diversity of Bacteroides spp., Clostridium spp., Collinsella spp., Eggerthella spp. and other bacteria increased, which was consistent with the theory of functional redundancy of gut microbiota. From the answers to the questionnaires, a decrease in the quality of life was found (up to 70 points out of 100) according to six of the eight scales used. After the combined therapy using the synbiotic LB-complex L in the study group, 56% of the examined patients showed their microbiocenosis restored to normal; no grade III dysbiosis was detected in any patient. There was a significant decrease in CRP and ESR in these patients and an improvement in the quality of life by criteria reflecting physical health. Conclusion: Acute/chronic CVD in patients with CKD of the pre-dialysis and dialysis periods are the most frequent and formidable complications. The spectrum of “traditional” and “specific” CV risk factors in dialysis patients will be described in the chapter. Special attention will be paid to the intestinal microbiota and opportunistic intestinal microorganisms. The aim was to study the species composition of colon microbiocenosis in HD patients, and to evaluate the effectiveness of its correction using a new immobilized synbiotic. Materials and Methods. Samples of colon microbiota from 62 HD patients were studied before/after a course of diet therapy that included probiotic components, the immobilized synbiotic LB-complex L. MALDI-TOF Autoflex speed mass spectrometer was used in the Biotyper program mode. The efficacy of the immobilized synbiotic was determined based on the clinical data, questionnaires, and bacteriological tests. Results. Dysbiotic changes in microbiocenosis were revealed in all patients; in the absence/suppression of lacto-and bifidoflora, the number and diversity of Bacteroides spp.,Clostridium spp.,Collinsella spp.,Eggerthella spp. and other bacteria increased. After the combined therapy using the synbiotic LB-complex L in the study group, 56% of the examined patients showed their microbiocenosis restored to normal; no grade III dysbiosis was detected in any patient

    Numerical Simulation of Heat and Mass Transfer in an Open-Cell Foam Catalyst on Example of the Acetylene Hydrogenation Reaction

    No full text
    In the present work, based on numerical simulation, a comparative analysis of the flow of a chemically reacting gas flow through a catalyst is performed using the example of selective hydrogenation of acetylene in a wide range of flow temperatures variation. Catalyst models are based on open-cell foam material. A comparison is also made with calculations and experimental data for a granular catalyst. The porosity and cell diameter were chosen as variable parameters for the porous catalyst. The results of numerical studies were obtained in the form of component concentration fields of the gas mixture, vector fields of gas movement, values of conversion, and selectivity of the reaction under study. The parameters of the porous material of the catalyst are determined for the maximum efficiency of the process under study

    Numerical Simulation of Heat and Mass Transfer in an Open-Cell Foam Catalyst on Example of the Acetylene Hydrogenation Reaction

    No full text
    In the present work, based on numerical simulation, a comparative analysis of the flow of a chemically reacting gas flow through a catalyst is performed using the example of selective hydrogenation of acetylene in a wide range of flow temperatures variation. Catalyst models are based on open-cell foam material. A comparison is also made with calculations and experimental data for a granular catalyst. The porosity and cell diameter were chosen as variable parameters for the porous catalyst. The results of numerical studies were obtained in the form of component concentration fields of the gas mixture, vector fields of gas movement, values of conversion, and selectivity of the reaction under study. The parameters of the porous material of the catalyst are determined for the maximum efficiency of the process under study

    Aerogel Product Applications for High-Temperature Thermal Insulation

    No full text
    This paper presents the results of theoretical and experimental studies to determine the optimal thickness of thermal insulation from basalt fiber and aerogel products for pipelines at temperatures of 300 and 600 °C. We carried out a comparison of the key thermophysical characteristics of the claimed heat-insulating materials. We performed a thermal imaging survey of the furnace chimney, insulated with basalt fiber and aerogel, while controlling the temperature of the flue gases by establishing the required ratio of the flow rate of natural gas and oxidizer. The temperature gradient along the thickness of the thermal insulation was obtained using a numerical tool developed in ANSYS. The results show that aerogel surpasses basalt fiber in all key thermophysical characteristics. At the same time, the only barrier to widespread industrial production and use of aerogel in the high-temperature thermal insulation segment is its market cost, which is still several times higher than that of basalt fiber in terms of an equivalent performance

    Aerogel Product Applications for High-Temperature Thermal Insulation

    No full text
    This paper presents the results of theoretical and experimental studies to determine the optimal thickness of thermal insulation from basalt fiber and aerogel products for pipelines at temperatures of 300 and 600 °C. We carried out a comparison of the key thermophysical characteristics of the claimed heat-insulating materials. We performed a thermal imaging survey of the furnace chimney, insulated with basalt fiber and aerogel, while controlling the temperature of the flue gases by establishing the required ratio of the flow rate of natural gas and oxidizer. The temperature gradient along the thickness of the thermal insulation was obtained using a numerical tool developed in ANSYS. The results show that aerogel surpasses basalt fiber in all key thermophysical characteristics. At the same time, the only barrier to widespread industrial production and use of aerogel in the high-temperature thermal insulation segment is its market cost, which is still several times higher than that of basalt fiber in terms of an equivalent performance

    Efficiency of Direct Transcutaneous Electroneurostimulation of the Median Nerve in the Regression of Residual Neurological Symptoms after Carpal Tunnel Decompression Surgery

    No full text
    Carpal tunnel syndrome (CTS) is the most frequent entrapment neuropathy. CTS therapy includes wrist immobilization, kinesiotherapy, non-steroidal anti-inflammatory drugs, carpal tunnel steroid injection, acupuncture, and physical therapy. Carpal tunnel decompression surgery (CTDS) is recommended after failure of conservative therapy. In many cases, neurological disorders continue despite CTDS. The aim of this study was to investigate the efficiency of direct transcutaneous electroneurostimulation (TENS) of the median nerve in the regression of residual neurological symptoms after CTDS. Material and Methods: 60 patients aged 28–62 years with persisting sensory and motor disorders after CTDS were studied; 15 patients received sham stimulation with a duration 30 min.; 15 patients received high-frequency low-amplitude TENS (HF TENS) with a duration 30 min; 15 patients received low-frequency high-amplitude TENS (LF TENS) with a duration 30 min; and 15 patients received a co-administration of HF TENS (with a duration of15 min) and LF TENS (with a duration of 15 min). Results: Our research showed that TENS significantly decreased the pain syndrome, sensory disorders, and motor deficits in the patients after CTDS. Predominantly, negative and positive sensory symptoms and the pain syndrome improved after the HF TENS course. Motor deficits, reduction of fine motor skill performance, electromyography changes, and affective responses to chronic pain syndrome regressed significantly after the LF TENS course. Co-administration of HF TENS and LF TENS was significantly more effective than use of sham stimulation, HF TENS, or LF TENS in patients with residual neurological symptoms after CTDS

    Efficiency of Direct Transcutaneous Electroneurostimulation of the Median Nerve in the Regression of Residual Neurological Symptoms after Carpal Tunnel Decompression Surgery

    No full text
    Carpal tunnel syndrome (CTS) is the most frequent entrapment neuropathy. CTS therapy includes wrist immobilization, kinesiotherapy, non-steroidal anti-inflammatory drugs, carpal tunnel steroid injection, acupuncture, and physical therapy. Carpal tunnel decompression surgery (CTDS) is recommended after failure of conservative therapy. In many cases, neurological disorders continue despite CTDS. The aim of this study was to investigate the efficiency of direct transcutaneous electroneurostimulation (TENS) of the median nerve in the regression of residual neurological symptoms after CTDS. Material and Methods: 60 patients aged 28–62 years with persisting sensory and motor disorders after CTDS were studied; 15 patients received sham stimulation with a duration 30 min.; 15 patients received high-frequency low-amplitude TENS (HF TENS) with a duration 30 min; 15 patients received low-frequency high-amplitude TENS (LF TENS) with a duration 30 min; and 15 patients received a co-administration of HF TENS (with a duration of15 min) and LF TENS (with a duration of 15 min). Results: Our research showed that TENS significantly decreased the pain syndrome, sensory disorders, and motor deficits in the patients after CTDS. Predominantly, negative and positive sensory symptoms and the pain syndrome improved after the HF TENS course. Motor deficits, reduction of fine motor skill performance, electromyography changes, and affective responses to chronic pain syndrome regressed significantly after the LF TENS course. Co-administration of HF TENS and LF TENS was significantly more effective than use of sham stimulation, HF TENS, or LF TENS in patients with residual neurological symptoms after CTDS

    The “Angiogenic Switch” and Functional Resources in Cyclic Sports Athletes

    No full text
    Regular physical activity in cyclic sports can influence the so-called “angiogenic switch”, which is considered as an imbalance between proangiogenic and anti-angiogenic molecules. Disruption of the synthesis of angiogenic molecules can be caused by local changes in tissues under the influence of excessive physical exertion and its consequences, such as chronic oxidative stress and associated hypoxia, metabolic acidosis, sports injuries, etc. A review of publications on signaling pathways that activate and inhibit angiogenesis in skeletal muscles, myocardium, lung, and nervous tissue under the influence of intense physical activity in cyclic sports. Materials: We searched PubMed, SCOPUS, Web of Science, Google Scholar, Clinical keys, and e-LIBRARY databases for full-text articles published from 2000 to 2020, using keywords and their combinations. Results: An important aspect of adaptation to training loads in cyclic sports is an increase in the number of capillaries in muscle fibers, which improves the metabolism of skeletal muscles and myocardium, as well as nervous and lung tissue. Recent studies have shown that myocardial endothelial cells not only respond to hemodynamic forces and paracrine signals from neighboring cells, but also take an active part in heart remodeling processes, stimulating the growth and contractility of cardiomyocytes or the production of extracellular matrix proteins in myofibroblasts. As myocardial vascularization plays a central role in the transition from adaptive heart hypertrophy to heart failure, further study of the signaling mechanisms involved in the regulation of angiogenesis in the myocardium is important in sports practice. The study of the “angiogenic switch” problem in the cerebrovascular and cardiovascular systems allows us to claim that the formation of new vessels is mediated by a complex interaction of all growth factors. Although the lungs are one of the limiting systems of the body in cyclic sports, their response to high-intensity loads and other environmental stresses is often overlooked. Airway epithelial cells are the predominant source of several growth factors throughout lung organogenesis and appear to be critical for normal alveolarization, rapid alveolar proliferation, and normal vascular development. There are many controversial questions about the role of growth factors in the physiology and pathology of the lungs. The presented review has demonstrated that when doing sports, it is necessary to give a careful consideration to the possible positive and negative effects of growth factors on muscles, myocardium, lung tissue, and brain. Primarily, the “angiogenic switch” is important in aerobic sports (long distance running). Conclusions: Angiogenesis is a physiological process of the formation of new blood capillaries, which play an important role in the functioning of skeletal muscles, myocardium, lung, and nervous tissue in athletes. Violation of the “angiogenic switch” as a balance between proangiogenic and anti-angiogenic molecules can lead to a decrease in the functional resources of the nervous, musculoskeletal, cardiovascular, and respiratory systems in athletes and, as a consequence, to a decrease in sports performance

    Association of the ACTN3 Gene’s Single-Nucleotide Variant Rs1815739 (R577X) with Sports Qualification and Competitive Distance in Caucasian Athletes of the Southern Urals

    No full text
    An elite athlete’s status is associated with a multifactorial phenotype depending on many environmental and genetic factors. Of course, the peculiarities of the structure and function of skeletal muscles are among the most important characteristics in the context of athletic performance. Purpose: To study the associations of SNV rs1815739 (C577T or R577X) allelic variants and genotypes of the ACTN3 gene with qualification and competitive distance in Caucasian athletes of the Southern Urals. Methods: A total of 126 people of European origin who lived in the Southern Urals region took part in this study. The first group included 76 cyclical sports athletes (speed skating, running disciplines in track-and-field): SD (short distances) subgroup—40 sprinters (mean 22.1 ± 2.4 y.o.); LD (long distances) subgroup—36 stayer athletes (mean 22.6 ± 2.7 y.o.). The control group consisted of 50 healthy nonathletes (mean 21.4 ± 2.7 y.o.). We used the Step One Real-Time PCR System (Applied Biosystems, USA) device for real-time polymerase chain reaction. Results: The frequency of the major allele R was significantly higher in the SD subgroup compared to the control subgroup (80% vs. 64%; p-value = 0.04). However, we did not find any significant differences in the frequency of the R allele between the athletes of the SD subgroup and the LD subgroup (80% vs. 59.7%, respectively; p-value > 0.05). The frequency of the X allele was lower in the SD subgroup compared to the LD subgroup (20% vs. 40.3%; p-value = 0.03). The frequency of homozygous genotype RR was higher in the SD subgroup compared to the control group (60.0% vs. 34%; p-value = 0.04). The R allele was associated with competitive distance in the SD group athletes compared to those of the control group (OR = 2.45 (95% CI: 1.02–5.87)). The X allele was associated with competitive distance in the LD subgroup compared to the SD subgroup (OR = 2.7 (95% CI: 1.09–6.68)). Conclusions: Multiplicative and additive inheritance models demonstrated that high athletic performance for sprinters was associated with the homozygous dominant genotype 577RR in cyclical sports athletes of Caucasian origin in the Southern Urals

    Valproate-Induced Metabolic Syndrome

    No full text
    Valproic acid (VPA) and its salts (sodium calcium magnesium and orotic) are psychotropic drugs that are widely used in neurology and psychiatry. The long-term use of VPA increases the risk of developing adverse drug reactions (ADRs), among which metabolic syndrome (MetS) plays a special role. MetS belongs to a cluster of metabolic conditions such as abdominal obesity, high blood pressure, high blood glucose, high serum triglycerides, and low serum high-density lipoprotein. Valproate-induced MetS (VPA-MetS) is a common ADR that needs an updated multidisciplinary approach to its prevention and diagnosis. In this review, we consider the results of studies of blood (serum and plasma) and the urinary biomarkers of VPA-MetS. These metabolic biomarkers may provide the key to the development of a new multidisciplinary personalized strategy for the prevention and diagnosis of VPA-MetS in patients with neurological diseases, psychiatric disorders, and addiction diseases
    corecore