3 research outputs found

    Optical properties of soot particles emitted by standard and alternative aviation fuels

    No full text
    International audienceOptical properties of soot particles emitted by aircraft engines are affected by the chemical composition of the fuel and by the combustion conditions. In this work we investigate the response of certified instruments to soot particles with different physico-chemical properties (chemical composition, organic content, structure, number, etc.). A Combustion Aerosol STandard generator (CAST) designed to burn aeronautic fuel and dedicated to study the emissions after the combustion of Jet A-1 kerosene and synthetic paraffinic kerosene (SPK) is used in atmospheric combustion conditions at three oxidation airflow settings for each fuel. The CAST exhaust is monitored with a multitude of techniques which give information on the physico-chemical properties of particulates and other combustion induced pollutants. Therefore two complementary laser induced incandescence (LII) systems (custom-built and commercial) were used for the evaluation of soot emissions and mass spectrometry was used to study the chemical composition of non-volatile particulate matter (nvPM), semi-volatile particulate matter (svPM) and volatile particulate matter (vPM). A condensation particle counter (CPC) was used to obtain the particle number, a scanning mobility particle sizer (SMPS) was used to measure the particle size distributions and gas detectors were used to monitor the CO/CO2 and SO2 values. The emitted PM was characterized with two mass spectrometry techniques which linked the optical properties of the emissions to their chemical composition function of the experimental configuration and the combustion conditions

    Laser-induced incandescence and fluorescence for in-situ characterization of soot particles and precursors in semi-technical aeronautic combustors

    No full text
    National audiencePhysical and chemical properties of soot emitted from airplanes are still poorly known due to the difficult access at the core of these systems, as well as the stringent conditions into or at the exhaust of the engines. It is challenging to directly measure soot particles inside aeronautic combustors due to the high pressure and limited optical access. Under these harsh combustion conditions, we try to identify the mechanisms participating in the formation of soot particles. These mechanisms are still subject to numerous questions due to the lack of experimental evidence and high demand for processing power requested by theoretical models. The solution to this problem relies on the coordinated efforts of researchers for the implementation of experimental and theoretical tools. To overcome the experimental challenges, this work focuses on the development and implementation of laser induced incandescence (LII), a technique used for the detection of soot volume fraction, as well as laser induced fluorescence (LIF), a technique used for the characterization of soot precursors

    Optical properties of soot particles emitted by standard and alternative aviation fuels

    No full text
    International audienceOptical properties of soot particles emitted by aircraft engines are affected by the chemical composition of the fuel and by the combustion conditions. In this work we investigate the response of certified instruments to soot particles with different physico-chemical properties (chemical composition, organic content, structure, number, etc.). A Combustion Aerosol STandard generator (CAST) designed to burn aeronautic fuel and dedicated to study the emissions after the combustion of Jet A-1 kerosene and synthetic paraffinic kerosene (SPK) is used in atmospheric combustion conditions at three oxidation airflow settings for each fuel. The CAST exhaust is monitored with a multitude of techniques which give information on the physico-chemical properties of particulates and other combustion induced pollutants. Therefore two complementary laser induced incandescence (LII) systems (custom-built and commercial) were used for the evaluation of soot emissions and mass spectrometry was used to study the chemical composition of non-volatile particulate matter (nvPM), semi-volatile particulate matter (svPM) and volatile particulate matter (vPM). A condensation particle counter (CPC) was used to obtain the particle number, a scanning mobility particle sizer (SMPS) was used to measure the particle size distributions and gas detectors were used to monitor the CO/CO2 and SO2 values. The emitted PM was characterized with two mass spectrometry techniques which linked the optical properties of the emissions to their chemical composition function of the experimental configuration and the combustion conditions
    corecore