3 research outputs found

    Regional Differences in Intestinal Drug Metabolism

    Get PDF
    The intestines are key for the absorption of nutrients and water as well as drug metabolism, and it is well known that there are clear differences in the expression profile of drug metabolism enzymes along the intestinal tract. Yet, only a few studies have thoroughly investigated regional differences in human intestinal drug metabolism. In this study, we evaluated phase I and phase II metabolism in matched human ileum and colon precision-cut intestinal slices (PCIS). To this end, human PCIS were incubated for 3 h with testosterone (TT) and 7-hydroxycoumarin (7-HC) to examine phase I and phase II metabolism, respectively. Metabolite formation was assessed by high-performance liquid chromatography (HPLC) analysis. Our results demonstrated that androstenedione, 6β-hydroxytestosterone, 2β-hydroxytestosterone, and 7-HC sulfate, were predominantly formed in the ileum, while 15α-hydroxytestosterone and 7-HC glucuronide were mainly produced in the colon. Moreover, we also observed sex differences in phase II metabolite formation, which appeared to be higher in males as compared to females. Taken together, we demonstrated that phase I metabolism predominantly occurs in ileum PCIS, while phase II metabolism mostly takes place in colon PCIS. Moreover, we revealed that human PCIS can be used to study both regional and sex differences in intestinal metabolism

    Prenylated isoflavonoids from Fabaceae against the NorA efflux pump in Staphylococcus aureus

    No full text
    Abstract Overexpression of NorA efflux pumps plays a pivotal role in the multidrug-resistance mechanism in S. aureus. Here, we investigated the activities of prenylated isoflavonoids, present in the legume plant family (Fabaceae), as natural efflux pump inhibitors (EPIs) in fluoroquinolone-resistant S. aureus. We found that four prenylated isoflavonoids, namely neobavaisoflavone, glabrene, glyceollin I, and glyceollin III, showed efflux pump inhibition in the norA overexpressing S. aureus. At sub-inhibitory concentrations, neobavaisoflavone (6.25 µg/mL, 19 µM) and glabrene (12.5 µg/mL, 39 µM), showed up to 6 times more Eth accumulation in norA overexpressing S. aureus than in the control. In addition, these two compounds boosted the MIC of fluoroquinolones up to eightfold. No fluoroquinolone potentiation was observed with these isoflavonoids in the norA knockout strain, indicating NorA as the main target of these potential EPIs. In comparison to the reported NorA EPI reserpine, neobavaisoflavone showed similar potentiation of fluoroquinolone activity at 10 µM, higher Eth accumulation, and less cytotoxicity. Neobavaisoflavone and glabrene did not exhibit membrane permeabilization effects or cytotoxicity on Caco-2 cells. In conclusion, our findings suggest that the prenylated isoflavonoids neobavaisoflavone and glabrene are promising phytochemicals that could be developed as antimicrobials and resistance-modifying agents to treat fluoroquinolone-resistant S. aureus strains

    Rapid approach to complex boronic acids

    Get PDF
    The compatibility of free boronic acid building blocks in multicomponent reactions to readily create large libraries of diverse and complex small molecules was investigated. Traditionally, boronic acid synthesis is sequential, synthetically demanding, and time-consuming, which leads to high target synthesis times and low coverage of the boronic acid chemical space. We have performed the synthesis of large libraries of boronic acid derivatives based on multiple chemistries and building blocks using acoustic dispensing technology. The synthesis was performed on a nanomole scale with high synthesis success rates. The discovery of a protease inhibitor underscores the usefulness of the approach. Our acoustic dispensing-enabled chemistry paves the way to highly accelerated synthesis and miniaturized reaction scouting, allowing access to unprecedented boronic acid libraries
    corecore