2 research outputs found
An Improved Differential Evolution Algorithm for Numerical Optimization Problems
The differential evolution algorithm has gained popularity for solving complex optimization problems because of its simplicity and efficiency. However, it has several drawbacks, such as a slow convergence rate, high sensitivity to the values of control parameters, and the ease of getting trapped in local optima. In order to overcome these drawbacks, this paper integrates three novel strategies into the original differential evolution. First, a population improvement strategy based on a multi-level sampling mechanism is used to accelerate convergence and increase the diversity of the population. Second, a new self-adaptive mutation strategy balances the exploration and exploitation abilities of the algorithm by dynamically determining an appropriate value of the mutation parameters; this improves the search ability and helps the algorithm escape from local optima when it gets stuck. Third, a new selection strategy guides the search to avoid local optima. Twelve benchmark functions of different characteristics are used to validate the performance of the proposed algorithm. The experimental results show that the proposed algorithm performs significantly better than the original DE in terms of the ability to locate the global optimum, convergence speed, and scalability. In addition, the proposed algorithm is able to find the global optimal solutions on 8 out of 12 benchmark functions, while 7 other well-established metaheuristic algorithms, namely NBOLDE, ODE, DE, SaDE, JADE, PSO, and GA, can obtain only 6, 2, 1, 1, 1, 1, and 1 functions, respectively. Doi: 10.28991/HIJ-2023-04-02-014 Full Text: PD
An Adaptive Differential Evolution with Multiple Crossover Strategies for Optimization Problems
The efficiency of a Differential Evolution (DE) algorithm largely depends on the control parameters of the mutation strategy. However, fixed-value control parameters are not effective for all types of optimization problems. Furthermore, DE search capability is often restricted, leading to limited exploration and poor exploitation when relying on a single strategy. These limitations cause DE algorithms to potentially miss promising regions, converge slowly, and stagnate in local optima. To address these drawbacks, we proposed a new Adaptive Differential Evolution Algorithm with Multiple Crossover Strategy Scheme (ADEMCS). We introduced an adaptive mutation strategy that enabled DE to adapt to specific optimization problems. Additionally, we augmented DE with a powerful local search ability: a hunting coordination operator from the reptile search algorithm for faster convergence. To validate ADEMCS effectiveness, we ran extensive experiments using 32 benchmark functions from CEC2015 and CEC2016. Our new algorithm outperformed nine state-of-the-art DE variants in terms of solution quality. The integration of the adaptive mutation strategy and the hunting coordination operator significantly enhanced DE's global and local search capabilities. Overall, ADEMCS represented a promising approach for optimization, offering adaptability and improved performance over existing variants.
Â
Doi: 10.28991/HIJ-2024-05-02-02
Full Text: PD