322 research outputs found

    Backreaction in Axion Monodromy, 4-forms and the Swampland

    Full text link
    Axion monodromy models can always be described in terms of an axion coupled to 3-form gauge fields with non-canonical kinetic terms. The presence of the saxions parametrising the kinetic metrics of the 3-form fields leads to backreaction effects in the inflationary dynamics. We review the case in which saxions backreact on the K\"ahler metric of the inflaton leading to a logarithmic scaling of the proper field distance at large field. This behaviour is universal in Type II string flux compactifications and consistent with a refinement of the Swampland Conjecture. The critical point at which this behaviour appears depends on the mass hierarchy between the inflaton and the saxions. However, in tractable compactifications, such a hierarchy cannot be realised without leaving the regime of validity of the effective theory, disfavouring transplanckian excursions in string theory.Comment: Proceedings prepared for the "Workshop on Geometry and Physics", November 2016, Ringberg Castl

    The Inflaton as a MSSM Higgs and Open String Modulus Monodromy Inflation

    Get PDF
    It has been recently pointed out that the polarization BICEP2 results are consistent with the identification of an inflaton mass m \simeq 10^{13} GeV with the SUSY breaking scale in an MSSM with a fine-tuned SM Higgs. This identification leads to a Higgs mass m_h \simeq 126 GeV, consistent with LHC measurements. Here we propose that this naturally suggests to identify the inflaton with the heavy MSSM Higgs system. The fact that the extrapolated Higgs coupling lambda_{SM}\simeq 0 at scales below the Planck scale suggests the Higgs degrees of freedom could be associated to a Wilson line or D-brane position modulus in string theory. The Higgs system then has a shift symmetry and an N=2 structure which guarantees that its potential has an approximate quadratic chaotic inflation form. These moduli in string compactifications, being compact, allow for a trans-Planckian inflaton field range analogous to a version of monodromy inflation.Comment: 6 pages. Misprints corrected, references adde

    A Chern-Simons Pandemic

    Full text link
    In this paper we study the consistency of generalized global symmetries in theories of quantum gravity, in particular string theory. Such global symmetries arise in theories with (p+1)(p+1)-form gauge fields, and for spacetime dimension d≀p+3d\leq p+3 there are obstructions to their breaking even by quantum effects of charged objects. In 4d theories with a 2-form gauge field (or with an axion scalar), these fields endow Schwarzschild black holes with quantum hair, a global charge leading to usual trouble with remnants. We describe precise mechanisms, and examples from string compactifications and holographic pairs, in which these problems are evaded by either gauging or breaking the global symmetry, via (suitable versions of) Stuckelberg or Kaloper-Sorbo couplings. We argue that even in the absence of such couplings, the generic solution in string theory is the breaking of the global symmetries by cubic Chern-Simons terms involving different antisymmetric tensor fields. We conjecture that any theory with (standard or higher-degree antisymmetric tensor) gauge fields is in the Swampland unless its effective action includes such Chern-Simons terms. This conjecture implies that many familiar theories, like QED (even including the charged particles required by the Weak Gravity Conjecture) or N=8\mathcal{N}=8 supergravity in four dimensions, are inconsistent in quantum gravity unless they are completed by these Chern-Simons terms.Comment: 60 pages, 2 figure

    Minkowski 3-forms, Flux String Vacua, Axion Stability and Naturalness

    Full text link
    We discuss the role of Minkowski 3-forms in flux string vacua. In these vacua all internal closed string fluxes are in one to one correspondence with quantized Minkowski 4-forms. By performing a dimensional reduction of the D=10D=10 Type II supergravity actions we find that the 4-forms act as auxiliary fields of the Kahler and complex structure moduli in the effective action. We show that all the RR and NS axion dependence of the flux scalar potential appears through the said 4-forms. Gauge invariance of these forms then severely restricts the structure of the axion scalar potentials. Combined with duality symmetries it suggests that all perturbative corrections to the leading axion scalar potential V0V_0 should appear as an expansion in powers of V0V_0 itself. These facts could have an important effect e.g. on the inflaton models based on F-term axion monodromy. We also suggest that the involved multi-branched structure of string vacua provides for a new way to maintain interacting scalar masses stable against perturbative corrections.Comment: 39 pages. Typos corrected and added reference

    The Swampland Distance Conjecture for Kahler moduli

    Full text link
    The Swampland Distance Conjecture suggests that an infinite tower of modes becomes exponentially light when approaching a point that is at infinite proper distance in field space. In this paper we investigate this conjecture in the K\"ahler moduli spaces of Calabi-Yau threefold compactifications and further elucidate the proposal that the infinite tower of states is generated by the discrete symmetries associated to infinite distance points. In the large volume regime the infinite tower of states is generated by the action of the local monodromy matrices and encoded by an orbit of D-brane charges. We express these monodromy matrices in terms of the triple intersection numbers to classify the infinite distance points and construct the associated infinite charge orbits that become massless. We then turn to a detailed study of charge orbits in elliptically fibered Calabi-Yau threefolds. We argue that for these geometries the modular symmetry in the moduli space can be used to transfer the large volume orbits to the small elliptic fiber regime. The resulting orbits can be used in compactifications of M-theory that are dual to F-theory compactifications including an additional circle. In particular, we show that there are always charge orbits satisfying the distance conjecture that correspond to Kaluza-Klein towers along that circle. Integrating out the KK towers yields an infinite distance in the moduli space thereby supporting the idea of emergence in that context.Comment: 47 pages, 1 figure, 4 tables. v2:minor modifications and references adde

    Flux-induced Soft Terms on Type IIB/F-theory Matter Curves and Hypercharge Dependent Scalar Masses

    Full text link
    Closed string fluxes induce generically SUSY-breaking soft terms on supersymmetric type IIB orientifold compactifications with D3/D7 branes. This was studied in the past by inserting those fluxes on the DBI+CS actions for adjoint D3/D7 fields, where D7-branes had no magnetic fluxes. In the present work we generalise those computations to the phenomenologically more relevant case of chiral bi-fundamental fields laying at 7-brane intersections and F-theory local matter curves. We also include the effect of 7-brane magnetic flux as well as more general closed string backgrounds, including the effect of distant (anti-)D3-branes. We discuss several applications of our results. We find that squark/slepton masses become in general flux-dependent in F-theory GUT's. Hypercharge-dependent non-universal scalar masses with a characteristic sfermion hierarchy m_E^2 < m_L^2 < m_Q^2 < m_D^2 < m_U^2 are obtained. There are also flavor-violating soft terms both for matter fields living at intersecting 7-branes or on D3-branes at singularities. They point at a very heavy sfermion spectrum to avoid FCNC constraints. We also discuss the possible microscopic description of the fine-tuning of the EW Higgs boson in compactifications with a MSSM spectrum.Comment: 67 pages, 2 figures, 2 table
    • …
    corecore