64 research outputs found

    Inhibition of human immunodeficiency virus type-1 by cdk inhibitors

    Get PDF
    Current therapy for human immunodeficiency virus (HIV-1) infection relies primarily on the administration of anti-retroviral nucleoside analogues, either alone or in combination with HIV-protease inhibitors. Although these drugs have a clinical benefit, continuous therapy with the drugs leads to drug-resistant strains of the virus. Recently, significant progress has been made towards the development of natural and synthetic agents that can directly inhibit HIV-1 replication or its essential enzymes. We previously reported on the pharmacological cyclin-dependent kinase inhibitor (PCI) r-roscovitine as a potential inhibitor of HIV-1 replication. PCIs are among the most promising novel antiviral agents to emerge over the past few years. Potent activity on viral replication combined with proliferation inhibition without the emergence of resistant viruses, which are normally observed in HAART patients; make PCIs ideal candidates for HIV-1 inhibition. To this end we evaluated twenty four cdk inhibitors for their effect on HIV-1 replication in vitro. Screening of these compounds identified alsterpaullone as the most potent inhibitor of HIV-1 with activity at 150 nM. We found that alsterpaullone effectively inhibits cdk2 activity in HIV-1 infected cells with a low IC50 compared to control uninfected cells. The effects of alsterpaullone were associated with suppression of cdk2 and cyclin expression. Combining both alsterpaullone and r-roscovitine (cyc202) in treatment exhibited even stronger inhibitory activities in HIV-1 infected PBMCs

    The utilization of humanized mouse models for the study of human retroviral infections

    Get PDF
    The development of novel techniques and systems to study human infectious diseases in both an in vitro and in vivo settings is always in high demand. Ideally, small animal models are the most efficient method of studying human afflictions. This is especially evident in the study of the human retroviruses, HIV-1 and HTLV-1, in that current simian animal models, though robust, are often expensive and difficult to maintain. Over the past two decades, the construction of humanized animal models through the transplantation and engraftment of human tissues or progenitor cells into immunocompromised mouse strains has allowed for the development of a reconstituted human tissue scaffold in a small animal system. The utilization of small animal models for retroviral studies required expansion of the early CB-17 scid/scid mouse resulting in animals demonstrating improved engraftment efficiency and infectivity. The implantation of uneducated human immune cells and associated tissue provided the basis for the SCID-hu Thy/Liv and hu-PBL-SCID models. Engraftment efficiency of these tissues was further improved through the integration of the non-obese diabetic (NOD) mutation leading to the creation of NODSCID, NOD/Shi-scid IL2rγ-/-, and NOD/SCID β2-microglobulinnull animals. Further efforts at minimizing the response of the innate murine immune system produced the Rag2-/-γc-/- model which marked an important advancement in the use of human CD34+ hematopoietic stem cells. Together, these animal models have revolutionized the investigation of retroviral infections in vivo

    HTLV Tax: a fascinating multifunctional co-regulator of viral and cellular pathways

    Get PDF
    Human T-cell lymphotropic virus type 1 (HTLV-1) has been identified as the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus infects between 15 and 20 million people worldwide of which approximately 2–5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator, and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications (PTMs) of Tax and subcellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK) complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis

    The identification of unique serum proteins of HIV-1 latently infected long-term non-progressor patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The search for disease biomarkers within human peripheral fluids has become a favorable approach to preventative therapeutics throughout the past few years. The comparison of normal versus disease states can identify an overexpression or a suppression of critical proteins where illness has directly altered a patient's cellular homeostasis. In particular, the analysis of HIV-1 infected serum is an attractive medium with which to identify altered protein expression due to the ease and non-invasive methods of collecting samples as well as the corresponding insight into the <it>in vivo </it>interaction of the virus with infected cells/tissue. The utilization of proteomic techniques to globally identify differentially expressed serum proteins in response to HIV-1 infection is a significant undertaking that is complicated due to the innate protein profile of human serum.</p> <p>Results</p> <p>Here, the depletion of 12 of the most abundant serum proteins, followed by two-dimensional gel electrophoresis coupled with identification of these proteins using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, has allowed for the identification of differentially expressed, low abundant serum proteins. We have analyzed and compared serum samples from HIV-1 infected subjects who are being treated using highly active antiretroviral therapy (HAART) to those who are latently infected but have not progressed to AIDS despite the absence of treatment, i.e. long term non-progressors (LTNPs). Here we have identified unique serum proteins that are differentially expressed in LTNP HIV-1 patients and may contribute to the ability of these patients to combat HIV-1 infection in the absence of HAART. We focused on the cdk4/6 cell cycle inhibitor p16<sup>INK4A </sup>and found that the treatment of HIV-1 latently infected cell lines with p16<sup>INK4A </sup>decreases viral production despite it not being expressed endogenously in these cells.</p> <p>Conclusions</p> <p>Identification of these unique proteins may serve as an indication of altered viral states in response to infection as well as a natural phenotypic variability in response to HIV-1 infection in a given population.</p

    9-aminoacridine Inhibition of HIV-1 Tat Dependent Transcription

    Get PDF
    As part of a continued search for more efficient anti-HIV-1 drugs, we are focusing on the possibility that small molecules could efficiently inhibit HIV-1 replication through the restoration of p53 and p21WAF1 functions, which are inactivated by HIV-1 infection. Here we describe the molecular mechanism of 9-aminoacridine (9AA) mediated HIV-1 inhibition. 9AA treatment resulted in inhibition of HIV LTR transcription in a specific manner that was highly dependent on the presence and location of the amino moiety. Importantly, virus replication was found to be inhibited in HIV-1 infected cell lines by 9AA in a dose-dependent manner without inhibiting cellular proliferation or inducing cell death. 9AA inhibited viral replication in both p53 wildtype and p53 mutant cells, indicating that there is another p53 independent factor that was critical for HIV inhibition. p21WAF1 is an ideal candidate as p21WAF1 levels were increased in both p53 wildtype and p53 mutant cells, and p21WAF1 was found to be phosphorylated at S146, an event previously shown to increase its stability. Furthermore, we observed p21WAF1 in complex with cyclin T1 and cdk9 in vitro, suggesting a direct role of p21WAF1 in HIV transcription inhibition. Finally, 9AA treatment resulted in loss of cdk9 from the viral promoter, providing one possible mechanism of transcriptional inhibition. Thus, 9AA treatment was highly efficient at reactivating the p53 – p21WAF1 pathway and consequently inhibiting HIV replication and transcription
    corecore