4 research outputs found

    Synergistic combination of alkylphosphocholines with peptaibols in targeting Leishmania infantum in vitro

    No full text
    Anti-leishmanial treatment increasingly encounters therapeutic limitations due to drug toxicity and development of resistance. The effort for new therapeutic strategies led us to work on combinations of chemically different compounds that could yield enhanced leishmanicidal effect. Peptaibols are a special type of antimicrobial peptides that are able to form ion channels in cell membranes and potentially affect cell viability. We assayed the antileishmanial activity of two well studied helical peptaibols, the 16-residue antiamoebin and the 20-residue alamethicin-analogue suzukacillin, and we evaluated the biological effect of their combination with the alkylphosphocholine miltefosine and its synthetic analogue TC52. The peptaibols tested exhibited only moderate antileishmanial activity, however their combination with miltefosine had a super-additive effect against the intracellular parasite (combination index 0.83 and 0.43 for antiamoebin and suzukacillin respectively). Drug combinations altered the redox stage of promastigotes, rapidly dissipated mitochondrial membrane potential and induced concatenation of mitochondrial network promoting spheroidal morphology. These results evidenced a potent and specific antileishmanial effect of the peptaibols/miltefosine combinations, achieved with significantly lower concentrations of the compounds compared to monotherapy. Furthermore, they revealed the importance of exploring novel classes of bioactive compounds such as peptaibols and demonstrated for the first time that they can act in synergy with currently used antileishmanial drugs to improve the therapeutic outcome. Keywords: Leishmaniasis therapy, Miltefosine, Peptaibol antibiotics, Drug synergy, Mitochondrial membrane potential, Reactive oxygen specie

    Myeloid-Derived Suppressor Cells (MDSC) in the Umbilical Cord Blood: Biological Significance and Possible Therapeutic Applications

    No full text
    Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of myeloid cells that suppress immune responses in cancer, infection, and trauma. They mainly act by inhibiting T-cells, natural-killer cells, and dendritic cells, and also by inducing T-regulatory cells, and modulating macrophages. Although they are mostly associated with adverse prognosis of the underlying disease entity, they may display positive effects in specific situations, such as in allogeneic hematopoietic stem cell transplantation (HSCT), where they suppress graft-versus-host disease (GVHD). They also contribute to the feto-maternal tolerance, and in the fetus growth process, whereas several pregnancy complications have been associated with their defects. Human umbilical cord blood (UCB) is a source rich in MDSCs and their myeloid progenitor cells. Recently, a number of studies have investigated the generation, isolation, and expansion of UCB-MDSCs for potential clinical application associated with their immunosuppressive properties, such as GVHD, and autoimmune and inflammatory diseases. Given that a significant proportion of UCB units in cord blood banks are not suitable for clinical use in HSCT, they might be used as a significant source of MDSCs for research and clinical purposes. The current review summarizes the roles of MDSCs in the UCB, as well as their promising applications

    Perspectives for the Use of Umbilical Cord Blood in Transplantation and Beyond: Initiatives for an Advanced and Sustainable Public Banking Program in Greece

    No full text
    The umbilical cord blood (UCB) donated in public UCB banks is a source of hematopoietic stem cells (HSC) alternative to bone marrow for allogeneic HSC transplantation (HSCT). However, the high rejection rate of the donated units due to the strict acceptance criteria and the wide application of the haploidentical HSCT have resulted in significant limitation of the use of UCB and difficulties in the economic sustainability of the public UCB banks. There is an ongoing effort within the UCB community to optimize the use of UCB in the field of HSCT and a parallel interest in exploring the use of UCB for applications beyond HSCT i.e., in the fields of cell therapy, regenerative medicine and specialized transfusion medicine. In this report, we describe the mode of operation of the three public UCB banks in Greece as an example of an orchestrated effort to develop a viable UCB banking system by (a) prioritizing the enrichment of the national inventory by high-quality UCB units from populations with rare human leukocyte antigens (HLA), and (b) deploying novel sustainable applications of UCB beyond HSCT, through national and international collaborations. The Greek paradigm of the public UCB network may become an example for countries, particularly with high HLA heterogeneity, with public UCB banks facing sustainability difficulties and adds value to the international efforts aiming to sustainably expand the public UCB banking system

    Incidence and Prognosis of Clonal Hematopoiesis in patients with Chronic Idiopathic Neutropenia

    No full text
    The incidence and prognosis of clonal hematopoiesis in patients with isolated neutropenia among patients with idiopathic cytopenia of undetermined significance (ICUS), known as ICUS-N or chronic idiopathic neutropenia (CIN) patients, is poorly defined. In the present study we sought to investigate the frequency and clinical significance of mutations of genes implicated in myeloid malignancies using next generation sequencing, in CIN patients (n=185) with a long follow-up. We found that 21/185 patients (11.35%) carried totally 25 somatic mutations in 6 genes with median variant allele frequency (VAF) 12.75%. The most frequently mutated genes were DNMT3A and TET2 involving more than 80% of patients followed by IDH1/2, SRSF2 and ZRSR2. The frequency of transformation to a myeloid malignancy was low in the total group of patients (5/185 patients; 2.70%). However, from the transformed patients four belonged to the clonal (4/21; 19.05%) and one to the non-clonal (1/164; 0.61%) group, indicating that the presence of mutation(s) confers a relative risk for transformation 31.24 (P = 0.0017). The VAF of the mutant clones in the transformed patients was higher than 10% in all cases and the genes most frequently associated with malignant transformation were the SRSF2 and IDH1. No significant differences were identified between clonal and non-clonal groups in the severity of neutropenia. Patients with clonal disease were older compared to non-clonal patients. These data contribute to the better understanding of the heterogeneous entities underlying ICUS and highlight the importance of the mutation analysis for the diagnosis and prognosis of patients with unexplained neutropenias
    corecore