5 research outputs found

    Cloning and Characterization of Subunits of the T-Cell Receptor and Murine Leukemia Virus Enhancer Core-Binding Factor.

    Get PDF
    Moloney murine leukemia virus causes thymic leukemias when injected into newborn mice. A major determinant of the thymic disease specificity of Moloney virus genetically maps to the conserved viral core motif in the Moloney virus enhancer. Point mutations introduced into the core site significantly shifted the disease specificity of the Moloney virus from thymic leukemia to erythroid leukemia (N.A. Speck, B. Renjifo, E. Golemis, T.N. Fredrickson, J.W. Hartley, and N. Hopkins, Genes Dev. 4:233-242, 1990). We previously reported the purification of core-binding factors (CBF) from calf thymus nuclei (S. Wang and N.A. Speck, Mol. Cell. Biol. 12:89-102, 1992). CBF binds to core sites in murine leukemia virus and T-cell receptor enhancers. Affinity-purified CBF contains multiple polypeptides. In this study, we sequenced five tryptic peptides from two of the bovine CBF proteins and isolated three cDNA clones from a mouse thymus cDNA library encoding three of the tryptic peptides from the bovine proteins. The cDNA clones, which we call CBF beta p22.0, CBF beta p21.5, and CBF beta p17.6, encode three highly related but distinct proteins with deduced molecular sizes of 22.0, 21.5, and 17.6 kDa that appear to be translated from multiply spliced mRNAs transcribed from the same gene. CBF beta p22.0, CBF beta p21.5, and CBF beta p17.6 do not by themselves bind the core site. However, CBF beta p22.0 and CBF beta p21.5 form a complex with DNA-binding CBF alpha subunits and as a result decrease the rate of dissociation of the CBF protein-DNA complex. Association of the CBF beta subunits does not extend the phosphate contacts in the binding site. We propose that CBF beta is a non-DNA-binding subunit of CBF and does not contact DNA directly

    The signal transduction pathway underlying ion channel gene regulation by SP1-C-Jun interactions

    No full text
    During neuronal differentiation, an exquisitely controlled program of signal transduction events takes place, leading to the temporally and spatially regulated expression of genes associated with the differentiated phenotype. A critical class of genes involved in this phenomenon is that made up of genes encoding neurotransmitter-gated ion channels that play a central role in signal generation and propagation within the nervous system. We used the well established PC12 cell line to investigate the molecular details underlying the expression of the neuronal nicotinic acetylcholine receptor class of ion channels. Neuronal differentiation of PC12 cells can be induced by nerve growth factor, leading to an increase in neuronal nicotinic acetylcholine receptor gene expression. Nerve growth factor initiates several signal transduction cascades. Here, we show that the Ras-dependent mitogen-activated protein kinase and phosphoinositide 3-kinase pathways are critical for the nerve growth factor-mediated increase in the transcriptional activity of a neuronal nicotinic acetylcholine receptor gene promoter. In addition, we show that a component of the Ras-dependent mitogen-activated protein kinase pathway, nerve growth factor-inducible c-Jun, exerts its effects on receptor gene promoter activity most likely through protein-protein interactions with Sp1. Finally, we demonstrate that the target for nerve growth factor signaling is an Sp1-binding site within the neuronal nicotinic acetylcholine receptor gene promoter

    The anticoagulants market

    No full text
    corecore