7 research outputs found
Hybrid Metrology for the Development of Self-Assembled Metamaterials
L'abstract è presente nell'allegato / the abstract is in the attachmen
Hyperbolic Metamaterials via Hierarchical Block Copolymer Nanostructures
Hyperbolic metamaterials (HMMs) offer unconventional properties in the field of optics, enabling opportunities for confinement and propagation of light at the nanoscale. In‐plane orientation of the optical axis, in the direction coinciding with the anisotropy of the HMMs, is desirable for a variety of novel applications in nanophotonics and imaging. Here, a method for creating localized HMMs with in‐plane optical axis, based on block copolymer (BCP) blend instability, is introduced. The dewetting of BCP thin film over topographically defined substrates generates droplets composed of highly ordered lamellar nanostructures in hierarchical configuration. The hierarchical nanostructures represent a valuable platform for the subsequent pattern transfer into a Au/air HMM, exhibiting hyperbolic behavior in a broad wavelength range in the visible spectrum. A computed Purcell factor as high as 32 at 580 nm supports the strong reduction in the fluorescence lifetime of defects in nanodiamonds placed on top of the HMM
Liquid Phase Infiltration of Block Copolymers
Novel materials with defined composition and structures at the nanoscale are increasingly desired in several research fields spanning a wide range of applications. The development of new approaches of synthesis that provide such control is therefore required in order to relate the material properties to its functionalities. Self-assembling materials such as block copolymers (BCPs), in combination with liquid phase infiltration (LPI) processes, represent an ideal strategy for the synthesis of inorganic materials into even more complex and functional features. This review provides an overview of the mechanism involved in the LPI, outlining the role of the different polymer infiltration parameters on the resulting material properties. We report newly developed methodologies that extend the LPI to the realisation of multicomponent and 3D inorganic nanostructures. Finally, the recently reported implementation of LPI into different applications such as photonics, plasmonics and electronics are highlighted
Developing Quantitative Nondestructive Characterization of Nanomaterials: A Case Study on Sequential Infiltration Synthesis of Block Copolymers
The sequential infiltration synthesis (SIS) of inorganic materials in nanostructured block copolymer templates has rapidly progressed in the last few years to develop functional nanomaterials with controllable properties. To assist this rapid evolution, expanding the capabilities of nondestructive methods for quantitative characterization of the materials properties is required. In this paper, we characterize the SIS process on three model polymers with different infiltration profiles through ex situ quantification by reference-free grazing incidence X-ray fluorescence. More qualitative depth distribution results were validated by means of X-ray photoelectron spectroscopy and scanning transmission electron microscopy combined with energy-dispersive X-ray spectroscopy
Hybrid Metrology for Nanostructured Optical Metasurfaces
Metasurfaces have garnered increasing research interest in recent years due to their remarkable advantages, such as efficient miniaturization and novel functionalities compared to traditional optical elements such as lenses and filters. These advantages have facilitated their rapid commercial deployment. Recent advancements in nanofabrication have enabled the reduction of optical metasurface dimensions to the nanometer scale, expanding their capabilities to cover visible wavelengths. However, the pursuit of large-scale manufacturing of metasurfaces with customizable functions presents challenges in controlling the dimensions and composition of the constituent dielectric materials. To address these challenges, the combination of block copolymer (BCP) self-assembly and sequential infiltration synthesis (SIS), offers an alternative for fabrication of high-resolution dielectric nanostructures with tailored composition and optical functionalities. However, the absence of metrological techniques capable of providing precise and reliable characterization of the refractive index of dielectric nanostructures persists. This study introduces a hybrid metrology strategy that integrates complementary synchrotron-based traceable X-ray techniques to achieve comprehensive material characterization for the determination of the refractive index on the nanoscale. To establish correlations between material functionality and their underlying chemical, compositional and dimensional properties, TiO2 nanostructures model systems were fabricated by SIS of BCPs. The results from synchrotron-based analyses were integrated into physical models, serving as a validation scheme for laboratory-scale measurements to determine effective refractive indices of the nanoscale dielectric materials
Tailored inclusion of semiconductor nanoparticles in nanoporous polystyrene-block-polymethyl methacrylate thin films
Nanoporous/nanocomposite thin films with controlled morphology at nanoscale were prepared onto transparent and conductive indium tin oxide (ITO) supports by exploiting the self-assembly of a lamellar polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) block copolymer (BCP). A perpendicular orientation of PS and PMMA lamellar nanodomains was achieved by grafting a random PS-r-PMMA copolymer to the ITO supports and successive thermal annealing. Stable and reproducible nanoporous morphologies, characterized by PS lamellar nanodomains of width equal to ≈20 nm alternating to nanochannels of width equal to ≈8 nm, were obtained by irradiating the samples with an appropriate UV-C dose able to fix the relative arrangement of PS domains through activation of cross-linking reactions and selective removal of PMMA blocks. Nanoporous hybrid composites with a stable morphology were obtained either by applying the UV irradiation protocol to BCP nanocomposites characterized by selective inclusion of zinc oxide (ZnO) nanoparticles (NPs) in the PS domains (nanocomposite first/nanopores after) or by selective infiltration of cadmium selenide (CdSe) NPs in the nanochannels left free by PMMA removal through UV irradiation (nanopores first/nanocomposite after), demonstrating the strenght of the approach