13 research outputs found

    Towards a pan-European coastal flood awareness system: Skill of extreme sea-level forecasts from the Copernicus Marine Service

    Get PDF
    European coasts are regularly exposed to severe storms that trigger extreme water-level conditions, leading to coastal flooding and erosion. Early Warning Systems (EWS) are important tools for the increased preparedness and response against coastal flood events, hence greatly reducing associated risks. With this objective, a proof-of-concept for a European Coastal Flood Awareness System (ECFAS) was developed in the framework of the H2020 ECFAS project, which capitalizes on the Copernicus products. In this context, this manuscript evaluates for the first time the capability of the current Copernicus Marine operational ocean models to forecast extreme coastal water levels and hence to feed coastal flood awareness applications at European scale. A methodology is developed to focus the assessment on storm-driven extreme sea level events (EEs) from tide-gauge records. For the detected EEs, the event peak representation is validated, and the impact of forecast lead time is evaluated. Results show satisfactory performance but a general underprediction of peak magnitudes of 10% for water levels and 18% for surges across the detected EEs. In average, the models are capable of independently flagging 76% of the observed EEs. Forecasts show limited lead time impact up to a 4-day lead time, demonstrating the suitability of the systems for early warning applications. Finally, by separating the surge and tidal contributions to the extremes, the potential sources of the prediction misfits are discussed and consequent recommendations for the evolution of the Copernicus Marine Service forecasting models towards coastal flooding applications are provided

    Radiational tides: their double-counting in storm surge forecasts and contribution to the Highest Astronomical Tide

    Get PDF
    Tide predictions based on tide-gauge observations are not just the astronomical tides; they also contain radiational tides – periodic sea-level changes due to atmospheric conditions and solar forcing. This poses a problem of double-counting for operational forecasts of total water level during storm surges. In some surge forecasting, a regional model is run in two modes: tide only, with astronomic forcing alone; and tide and surge, forced additionally by surface winds and pressure. The surge residual is defined to be the difference between these configurations and is added to the local harmonic predictions from gauges. Here we use the Global Tide and Surge Model (GTSM) based on Delft-FM to investigate this in the UK and elsewhere, quantifying the weather-related tides that may be double-counted in operational forecasts. We show that the global S2 atmospheric tide is captured by the tide-and-surge model and observe changes in other major constituents, including M2. The Lowest and Highest Astronomical Tide levels, used in navigation datums and design heights, are derived from tide predictions based on observations. We use our findings on radiational tides to quantify the extent to which these levels may contain weather-related components

    Parameter estimation for a global tide and surge model with a memory-efficient order reduction approach

    Full text link
    Accurate parameter estimation for the Global Tide and Surge Model (GTSM) benefits from observations with long time-series. However, increasing the number of measurements leads to a large computation demand and increased memory requirements, especially for the ensemble-based methods that assimilate the measurements at one batch. In this study, a memory-efficient parameter estimation scheme using model order reduction in time patterns is developed for a high-resolution global tide model. We propose using projection onto empirical time-patterns to reduce the model output time-series to a much smaller linear subspace. Then, to further improve the estimation accuracy, we introduce an outer-loop, similar to Incremental 4D-VAR, to evaluate model-increments at a lower resolution and subsequently reduce the computational cost. The inner-loop optimizes parameters using the lower-resolution model and an iterative least-squares estimation algorithm called DUD. The outer-loop updates the initial output from the high-resolution model with updated parameters from the converged inner-loop and then restarts the inner-loop. We performed experiments to adjust the bathymetry with observations from the FES2014 dataset. Results show that the time patterns of the tide series can be successfully projected to a lower dimensional subspace, and memory requirements are reduced by a factor of 22 for our experiments. The estimation is converged after three outer iterations in our experiment, and tide representation is significantly improved, achieving a 34.5% reduction of error. The model's improvement is not only shown for the calibration dataset, but also for several validation datasets consisting of one year of time-series from FES2014 and UHSLC tide gauges.Mathematical Physic

    Computation-Efficient Parameter Estimation for a High-Resolution Global Tide and Surge Model

    Full text link
    In this study, a computation-efficient parameter estimation scheme for high-resolution global tide models is developed. The method is applied to Global Tide and Surge Model with an unstructured grid with a resolution of about 2.5 km in the coastal area and about 4.9 million cells. The estimation algorithm uses an iterative least squares method, known as DUD. We use time-series derived from the FES2014 tidal database in deep water as observations to estimate corrections to the bathymetry. Although the model and estimation algorithm run in parallel, directly applying of DUD would not be affordable computationally. To reduce the computational demand, a coarse-to-fine strategy is proposed by using output from a coarser model to replace the fine model. There are two approaches; One is completely replacing the fine model with a coarser model during calibration (Coarse Calibration) and the second is Coarse Incremental Calibration, that replaces the output increments between the initial model and model with modified parameters by coarser grid model simulations. To further reduce the computation time, the parameter dimension is reduced from O(106) to O(102) based on sensitivity analysis, which greatly reduces the required number of model simulations and storage. In combination, these methods form an efficient optimization strategy. Experiments show that the accuracy of the tidal representation can be improved significantly at affordable cost. Validation for other time-periods and using coastal tide-gauges shows that the accuracy is improved significantly. However, the calibration period of two weeks is short and leads to some over-fitting of the model.Mathematical Physic

    A High-Resolution Global Dataset of Extreme Sea Levels, Tides, and Storm Surges, Including Future Projections

    Full text link
    The world’s coastal areas are increasingly at risk of coastal flooding due to sea-level rise (SLR). We present a novel global dataset of extreme sea levels, the Coastal Dataset for the Evaluation of Climate Impact (CoDEC), which can be used to accurately map the impact of climate change on coastal regions around the world. The third generation Global Tide and Surge Model (GTSM), with a coastal resolution of 2.5 km (1.25 km in Europe), was used to simulate extreme sea levels for the ERA5 climate reanalysis from 1979 to 2017, as well as for future climate scenarios from 2040 to 2100. The validation against observed sea levels demonstrated a good performance, and the annual maxima had a mean bias (MB) of -0.04 m, which is 50% lower than the MB of the previous GTSR dataset. By the end of the century (2071–2100), it is projected that the 1 in 10-year water levels will have increased 0.34 m on average for RCP4.5, while some locations may experience increases of up to 0.5 m. The change in return levels is largely driven by SLR, although at some locations changes in storms surges and interaction with tides amplify the impact of SLR with changes up to 0.2 m. By presenting an application of the CoDEC dataset to the city of Copenhagen, we demonstrate how climate impact indicators derived from simulation can contribute to an understanding of climate impact on a local scale. Moreover, the CoDEC output locations are designed to be used as boundary conditions for regional models, and we envisage that they will be used for dynamic downscaling

    A High-Resolution Global Dataset of Extreme Sea Levels, Tides, and Storm Surges, Including Future Projections

    Full text link
    The world’s coastal areas are increasingly at risk of coastal flooding due to sea-level rise (SLR). We present a novel global dataset of extreme sea levels, the Coastal Dataset for the Evaluation of Climate Impact (CoDEC), which can be used to accurately map the impact of climate change on coastal regions around the world. The third generation Global Tide and Surge Model (GTSM), with a coastal resolution of 2.5 km (1.25 km in Europe), was used to simulate extreme sea levels for the ERA5 climate reanalysis from 1979 to 2017, as well as for future climate scenarios from 2040 to 2100. The validation against observed sea levels demonstrated a good performance, and the annual maxima had a mean bias (MB) of -0.04 m, which is 50% lower than the MB of the previous GTSR dataset. By the end of the century (2071–2100), it is projected that the 1 in 10-year water levels will have increased 0.34 m on average for RCP4.5, while some locations may experience increases of up to 0.5 m. The change in return levels is largely driven by SLR, although at some locations changes in storms surges and interaction with tides amplify the impact of SLR with changes up to 0.2 m. By presenting an application of the CoDEC dataset to the city of Copenhagen, we demonstrate how climate impact indicators derived from simulation can contribute to an understanding of climate impact on a local scale. Moreover, the CoDEC output locations are designed to be used as boundary conditions for regional models, and we envisage that they will be used for dynamic downscaling.Mathematical Physic

    Global modeling of tropical cyclone storm surges using high-resolution forecasts

    Full text link
    We assess the suitability of ECMWF Integrated Forecasting System (IFS) data for the global modeling of tropical cyclone (TC) storm surges. We extract meteorological forcing from the IFS at a 0.225° horizontal resolution for eight historical TCs and simulate the corresponding surges using the global tide and surge model. Maximum surge heights for Hurricanes Irma and Sandy are compared with tide gauge observations, with R 2 -values of 0.86 and 0.74 respectively. Maximum surge heights for the other TCs are in line with literature. Our case studies demonstrate that a horizontal resolution of 0.225° is sufficient for the large-scale modeling of TC surges. By upscaling the meteorological forcing to coarser resolutions as low as 1.0°, we assess the effects of horizontal resolution on the performance of surge modeling. We demonstrate that coarser resolutions result in lower-modeled surges for all case studies, with modeled surges up to 1 m lower for Irma and Nargis. The largest differences in surges between the different resolutions are found for the TCs with the highest surges. We discuss possible drivers of maximum surge heights (TC size, intensity, and coastal slope and complexity), and find that coastal complexity and slope play a more profound role than TC size and intensity alone. The highest surges are found in areas with complex coastlines (fractal dimension > 1.10) and, in general, shallow coastlines. Our findings show that using high-resolution meteorological forcing is particularly beneficial for areas prone to high TC surges, since these surges are reduced the most in coarse-resolution datasets. Mathematical Physic

    Global Projections of Storm Surges Using High-Resolution CMIP6 Climate Models

    Full text link
    In the coming decades, coastal flooding will become more frequent due to sea-level rise and potential changes in storms. To produce global storm surge projections from 1950 to 2050, we force the Global Tide and Surge Model with a ∌25-km resolution climate model ensemble from the Coupled Model Intercomparison Project Phase 6 High Resolution Model Intercomparison Project (HighResMIP). This is the first time that such a high-resolution ensemble is used to assess changes in future storm surges across the globe. We validate the present epoch (1985–2014) against the ERA5 climate reanalysis, which shows a good overall agreement. However, there is a clear spatial bias with generally a positive bias in coastal areas along semi-enclosed seas and negative bias in equatorial regions. Comparing the future epoch (2021–2050) against the historical epoch (1951–1980), we project ensemble-median changes up to 0.1 (or 20%) in the 1 in 10-year storm surge levels. These changes are not uniform across the globe with decreases along the coast of Mediterranean and northern Africa and southern Australia and increases along the south coast of Australia and Alaska. There are also increases along (parts) of the coasts of northern Caribbean, eastern Africa, China and the Korean peninsula, but with less agreement among the HighResMIP ensemble. Information resulting from this study can be used to inform broad-scale assessment of coastal impacts under future climate change.Coastal EngineeringMathematical Physic
    corecore