10 research outputs found

    Outcome of urogenital infection with Chlamydia muridarum in CD-14 gene knockout mice

    Get PDF
    BACKGROUND: CD14 has been postulated to play a role in chlamydial immunity and immunopathology. There is evidence to support this role in human infections but its function in a mouse model has not been investigated. METHODS: Female CD14 gene knockout and C57BL/6J wild type mice were infected intravaginally with Chlamydia muridarum. The infection course was monitored by detection of viable chlamydiae from serially collected cervical-vaginal swabs. The sequela of tubal factor infertility was assessed using hydrosalpinx formation as a surrogate marker. RESULTS: A significantly abbreviated infection course was observed in the CD14 gene knockout mice but hydrosalpinx formation occurred at similar rates between the two groups. CONCLUSION: Involvement of CD14 during chlamydial infection impedes infection resolution but this does not affect the sequela of infertility as assessed by hydrosalpinx formation

    Plasmid deficiency in urogenital isolates of Chlamydia trachomatis reduces infectivity and virulence in a mouse model.

    Get PDF
    We hypothesized that the plasmid of urogenital isolates of Chlamydia trachomatis would modulate infectivity and virulence in a mouse model. To test this hypothesis, we infected female mice in the respiratory or urogenital tract with graded doses of a human urogenital isolate of C. trachomatis, serovar F, possessing the cognate plasmid. For comparison, we inoculated mice with a plasmid-free serovar F isolate. Following urogenital inoculation, the plasmid-free isolate displayed significantly reduced infectivity compared with the wild-type strain with the latter yielding a 17-fold lower infectious dose to yield 50% infection. When inoculated via the respiratory tract, the plasmid-free isolate exhibited reduced infectivity and virulence (as measured by weight change) when compared to the wild-type isolate. Further, differences in infectivity, but not in virulence were observed in a C. trachomatis, serovar E isolate with a deletion within the plasmid coding sequence 1 when compared to a serovar E isolate with no mutations in the plasmid. We conclude that plasmid loss reduces virulence and infectivity in this mouse model. These findings further support a role for the chlamydial plasmid in infectivity and virulence in vivo

    Inhibition of Matrix Metalloproteinases Protects Mice from Ascending Infection and Chronic Disease Manifestations Resulting from Urogenital Chlamydia muridarum Infection

    No full text
    Matrix metalloproteinases (MMP) are a family of host-derived enzymes involved in the turnover of extracellular matrix molecules. We have previously reported enhanced expression of matrix metalloproteinases in Chlamydia muridarum urogenital tract infection of female mice. Kinetics and patterns of MMP expression as well as enhanced expression in susceptible strains of mice in the prior study implied a role for MMP in pathogenesis. To explore this further, we infected a susceptible strain of mice (C3H/HeN) with C. muridarum and treated two groups of mice with either one of two chemical inhibitors of MMP (MMPi; captopril and a chemically modified tetracycline) and reserved infected sham-treated mice as controls. Neither of the treatments affected shedding of viable chlamydiae from the lower urogenital tract, but the administration of either MMPi protected mice from the formation of hydrosalpinx—a surrogate marker of oviduct occlusion and infertility. Interestingly, the mechanism of protection for mice treated with chemically modified tetracycline 3, appeared to be related to prevention of ascending upper genital tract infection. These results imply that MMP are involved in pathogenesis of chlamydial infection in this model by mediating ascension of the infection into the upper genital tract

    Elimination of Mycoplasma contamination in Chlamydia stocks as a result of in vivo passage or plaque isolation

    No full text
    Abstract Objective This study aims to eliminate Mycoplasma spp. contamination from laboratory stocks of Chlamydia spp. by in vivo passage or by plaque assay. Results We have described two methods of eliminating Mycoplasma contamination from Chlamydia laboratory stocks. We conclude that Mycoplasma species commonly contaminating chlamydial stocks do not survive passage in mice. Chlamydia may also be derived Mycoplasma-free by plaque assay

    Evaluation of the Mitragynine Content, Levels of Toxic Metals and the Presence of Microbes in Kratom Products Purchased in the Western Suburbs of Chicago

    No full text
    Kratom (Mitragyna speciosa, Korth) is a tree-like plant that is indigenous to Southeast Asia. Kratom leaf products have been used in traditional folk medicine for their unique combination of stimulant and opioid-like effects. Kratom is being increasingly used in the West for its reputed benefits in the treatment of pain, depression and opioid use disorder. Recently, the United States Food and Drug Administration and Centers for Disease Control have raised concerns regarding the contamination of some kratom products with toxic metals (Pb and Ni) and microbes such as Salmonella. To further explore this issue, eight different kratom products were legally purchased from various “head”/”smoke” shops in the Western Suburbs of Chicago and then tested for microbial burden, a panel of metals (Ni, Pb, Cr, As, Hg, Cd), and levels of the main psychoactive alkaloid mitragynine. All of the samples contained significant, but variable, levels of mitragynine (3.9–62.1 mg/g), indicating that the products were, in fact, derived from kratom. All but two of the samples tested positive for the presence of various microbes including bacteria and fungi. However, none of the samples tested positive for Salmonella. Seven products showed significant levels of Ni (0.73–7.4 µg/g), Pb (0.16–1.6 µg/g) and Cr (0.21–5.7 µg/g) while the other product was negative for metals. These data indicate that many kratom products contain variable levels of mitragynine and can contain significant levels of toxic metals and microbes. These findings highlight the need for more stringent standards for the production and sale of kratom products

    Strain and Virulence Diversity in the Mouse Pathogen Chlamydia muridarumâ–¿

    No full text
    The mouse chlamydial pathogen Chlamydia muridarum has been used as a model organism for the study of human Chlamydia trachomatis urogenital and respiratory tract infections. To date, two commonly used C. muridarum isolates have been used interchangeably and are essentially taken to be identical. Herein, we present data that indicate that this is not the case. The C. muridarum Weiss isolate and C. muridarum Nigg isolate varied significantly in their virulences in vivo and possessed different growth characteristics in vitro. Distinct differences were observed in intravaginal 50% infectious doses and in challenge infections, with the Weiss isolate displaying greater virulence. Respiratory infection by the intranasal route also indicated a greater virulence of the Weiss isolate. In vitro, morphometric analysis revealed that the Weiss isolate produced consistently smaller inclusions in human cervical adenocarcinoma cells (HeLa 229) and smaller plaques in monolayers of mouse fibroblasts (L929) than did the Nigg isolate. In addition, the Weiss isolate possessed significantly higher replicative yields in vitro than did the Nigg isolate. In plaque-purified isolates derived from our stocks of these two strains, total genomic sequencing identified several unique nonsynonymous single nucleotide polymorphisms and insertion/deletion mutations when our Weiss (n = 4) and Nigg (n = 5) isolates were compared with the published Nigg sequence. In addition, the two isolates shared 11 mutations compared to the published Nigg sequence. These results prove that there is genotypic and virulence diversity among C. muridarum isolates. These findings can be exploited to determine factors related to chlamydial virulence and immunity

    Plasmid deficiency in urogenital isolates of Chlamydia trachomatis reduces infectivity and virulence in a mouse model

    No full text
    We hypothesized that the plasmid of urogenital isolates of Chlamydia trachomatis would modulate infectivity and virulence in a mouse model. To test this hypothesis, we infected female mice in the respiratory or urogenital tract with graded doses of a human urogenital isolate of Chlamydia trachomatis, serovar F, possessing the cognate plasmid. For comparison, we inoculated mice with a plasmid-free serovar F isolate. Following urogenital inoculation, the plasmid-free isolate displayed significantly reduced infectivity compared to the wild type strain with the latter yielding a 17-fold lower infectious dose to yield 50% infection. When inoculated via the respiratory tract the plasmid-free isolate exhibited reduced infectivity and virulence (as measured by weight change) when compared to the wild type isolate. Further, differences in infectivity but not virulence were observed in a C. trachomatis, serovar E isolate with a deletion within the plasmid coding sequence 1 when compared to a serovar E isolate with no mutations in the plasmid. We conclude that plasmid loss reduces virulence and infectivity in this mouse model. These findings further support a role for the chlamydial plasmid in infectivity and virulence in vivo
    corecore