40 research outputs found

    Approximate Message Passing for Underdetermined Audio Source Separation

    Get PDF
    Approximate message passing (AMP) algorithms have shown great promise in sparse signal reconstruction due to their low computational requirements and fast convergence to an exact solution. Moreover, they provide a probabilistic framework that is often more intuitive than alternatives such as convex optimisation. In this paper, AMP is used for audio source separation from underdetermined instantaneous mixtures. In the time-frequency domain, it is typical to assume a priori that the sources are sparse, so we solve the corresponding sparse linear inverse problem using AMP. We present a block-based approach that uses AMP to process multiple time-frequency points simultaneously. Two algorithms known as AMP and vector AMP (VAMP) are evaluated in particular. Results show that they are promising in terms of artefact suppression.Comment: Paper accepted for 3rd International Conference on Intelligent Signal Processing (ISP 2017

    DCASE 2018 Challenge Surrey Cross-Task convolutional neural network baseline

    Get PDF
    The Detection and Classification of Acoustic Scenes and Events (DCASE) consists of five audio classification and sound event detection tasks: 1) Acoustic scene classification, 2) General-purpose audio tagging of Freesound, 3) Bird audio detection, 4) Weakly-labeled semi-supervised sound event detection and 5) Multi-channel audio classification. In this paper, we create a cross-task baseline system for all five tasks based on a convlutional neural network (CNN): a "CNN Baseline" system. We implemented CNNs with 4 layers and 8 layers originating from AlexNet and VGG from computer vision. We investigated how the performance varies from task to task with the same configuration of neural networks. Experiments show that deeper CNN with 8 layers performs better than CNN with 4 layers on all tasks except Task 1. Using CNN with 8 layers, we achieve an accuracy of 0.680 on Task 1, an accuracy of 0.895 and a mean average precision (MAP) of 0.928 on Task 2, an accuracy of 0.751 and an area under the curve (AUC) of 0.854 on Task 3, a sound event detection F1 score of 20.8% on Task 4, and an F1 score of 87.75% on Task 5. We released the Python source code of the baseline systems under the MIT license for further research.Comment: Accepted by DCASE 2018 Workshop. 4 pages. Source code availabl

    Weakly Labelled AudioSet Tagging with Attention Neural Networks

    Full text link
    Audio tagging is the task of predicting the presence or absence of sound classes within an audio clip. Previous work in audio tagging focused on relatively small datasets limited to recognising a small number of sound classes. We investigate audio tagging on AudioSet, which is a dataset consisting of over 2 million audio clips and 527 classes. AudioSet is weakly labelled, in that only the presence or absence of sound classes is known for each clip, while the onset and offset times are unknown. To address the weakly-labelled audio tagging problem, we propose attention neural networks as a way to attend the most salient parts of an audio clip. We bridge the connection between attention neural networks and multiple instance learning (MIL) methods, and propose decision-level and feature-level attention neural networks for audio tagging. We investigate attention neural networks modeled by different functions, depths and widths. Experiments on AudioSet show that the feature-level attention neural network achieves a state-of-the-art mean average precision (mAP) of 0.369, outperforming the best multiple instance learning (MIL) method of 0.317 and Google's deep neural network baseline of 0.314. In addition, we discover that the audio tagging performance on AudioSet embedding features has a weak correlation with the number of training samples and the quality of labels of each sound class.Comment: 13 page

    Learning with Out-of-Distribution Data for Audio Classification

    Get PDF
    In supervised machine learning, the assumption that training data is labelled correctly is not always satisfied. In this paper, we investigate an instance of labelling error for classification tasks in which the dataset is corrupted with out-of-distribution (OOD) instances: data that does not belong to any of the target classes, but is labelled as such. We show that detecting and relabelling certain OOD instances, rather than discarding them, can have a positive effect on learning. The proposed method uses an auxiliary classifier, trained on data that is known to be in-distribution, for detection and relabelling. The amount of data required for this is shown to be small. Experiments are carried out on the FSDnoisy18k audio dataset, where OOD instances are very prevalent. The proposed method is shown to improve the performance of convolutional neural networks by a significant margin. Comparisons with other noise-robust techniques are similarly encouraging.Comment: Paper accepted for 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2020

    Polyphonic Sound Event Detection and Localization using a Two-Stage Strategy

    Get PDF
    Sound event detection (SED) and localization refer to recognizing sound events and estimating their spatial and temporal locations. Using neural networks has become the prevailing method for SED. In the area of sound localization, which is usually performed by estimating the direction of arrival (DOA), learning-based methods have recently been developed. In this paper, it is experimentally shown that the trained SED model is able to contribute to the direction of arrival estimation (DOAE). However, joint training of SED and DOAE degrades the performance of both. Based on these results, a two-stage polyphonic sound event detection and localization method is proposed. The method learns SED first, after which the learned feature layers are transferred for DOAE. It then uses the SED ground truth as a mask to train DOAE. The proposed method is evaluated on the DCASE 2019 Task 3 dataset, which contains different overlapping sound events in different environments. Experimental results show that the proposed method is able to improve the performance of both SED and DOAE, and also performs significantly better than the baseline method.303

    An Improved Event-Independent Network for Polyphonic Sound Event Localization and Detection

    Full text link
    Polyphonic sound event localization and detection (SELD), which jointly performs sound event detection (SED) and direction-of-arrival (DoA) estimation, detects the type and occurrence time of sound events as well as their corresponding DoA angles simultaneously. We study the SELD task from a multi-task learning perspective. Two open problems are addressed in this paper. Firstly, to detect overlapping sound events of the same type but with different DoAs, we propose to use a trackwise output format and solve the accompanying track permutation problem with permutation-invariant training. Multi-head self-attention is further used to separate tracks. Secondly, a previous finding is that, by using hard parameter-sharing, SELD suffers from a performance loss compared with learning the subtasks separately. This is solved by a soft parameter-sharing scheme. We term the proposed method as Event Independent Network V2 (EINV2), which is an improved version of our previously-proposed method and an end-to-end network for SELD. We show that our proposed EINV2 for joint SED and DoA estimation outperforms previous methods by a large margin, and has comparable performance to state-of-the-art ensemble models.Comment: 5 pages, 2021 IEEE International Conference on Acoustics, Speech and Signal Processin

    Event-Independent Network for Polyphonic Sound Event Localization and Detection

    Full text link
    Polyphonic sound event localization and detection is not only detecting what sound events are happening but localizing corresponding sound sources. This series of tasks was first introduced in DCASE 2019 Task 3. In 2020, the sound event localization and detection task introduces additional challenges in moving sound sources and overlapping-event cases, which include two events of the same type with two different direction-of-arrival (DoA) angles. In this paper, a novel event-independent network for polyphonic sound event localization and detection is proposed. Unlike the two-stage method we proposed in DCASE 2019 Task 3, this new network is fully end-to-end. Inputs to the network are first-order Ambisonics (FOA) time-domain signals, which are then fed into a 1-D convolutional layer to extract acoustic features. The network is then split into two parallel branches. The first branch is for sound event detection (SED), and the second branch is for DoA estimation. There are three types of predictions from the network, SED predictions, DoA predictions, and event activity detection (EAD) predictions that are used to combine the SED and DoA features for on-set and off-set estimation. All of these predictions have the format of two tracks indicating that there are at most two overlapping events. Within each track, there could be at most one event happening. This architecture introduces a problem of track permutation. To address this problem, a frame-level permutation invariant training method is used. Experimental results show that the proposed method can detect polyphonic sound events and their corresponding DoAs. Its performance on the Task 3 dataset is greatly increased as compared with that of the baseline method.Comment: conferenc

    Experimental Investigation of Vacuum Membrane Distillation (VMD) Performance Based on Operational Parameters for Clean Water Production

    Get PDF
    Freshwater shortage is an ongoing concern across the world, due to increasing populations and climate change. Vacuum membrane distillation (VMD) is a viable approach for producing fresh water to meet the needs of society. In the current study, an experimental investigation has been conducted on a laboratory-scale single-stage module to explore the impact of operational parameters such as feed temperature, vacuum pressure, and feed salinity on the performance of vacuum membrane distillation (VMD), including permeate flux, gained output ratio, and specific thermal energy consumption. Results show that increasing the feed temperature and feed flow rate, and reducing the salinity, increases the permeate flux. As the feed temperature rises from 60 to 70°C, the permeate flux increases from 1.90 to 4.36 kg/m²h at a permeate pressure of 12 kPa and salinity of 30 g/L. Similarly, increasing the vacuum pressure from 12 to 18 kPa reduces the permeate flux. As a result, the specific thermal energy consumption increases from 728 to 803 kWh/m³. From experimental findings, it was observed that the rejected brine from VMD retains sufficient energy that could be utilized in another desalination system

    Audiovisual Transformer Architectures for Large-Scale Classification and Synchronization of Weakly Labeled Audio Events

    Full text link
    We tackle the task of environmental event classification by drawing inspiration from the transformer neural network architecture used in machine translation. We modify this attention-based feedforward structure in such a way that allows the resulting model to use audio as well as video to compute sound event predictions. We perform extensive experiments with these adapted transformers on an audiovisual data set, obtained by appending relevant visual information to an existing large-scale weakly labeled audio collection. The employed multi-label data contains clip-level annotation indicating the presence or absence of 17 classes of environmental sounds, and does not include temporal information. We show that the proposed modified transformers strongly improve upon previously introduced models and in fact achieve state-of-the-art results. We also make a compelling case for devoting more attention to research in multimodal audiovisual classification by proving the usefulness of visual information for the task at hand,namely audio event recognition. In addition, we visualize internal attention patterns of the audiovisual transformers and in doing so demonstrate their potential for performing multimodal synchronization
    corecore