5 research outputs found

    Intersubject local SAR variation for 7T prostate MR imaging with an eight-channel single-side adapted dipole antenna array

    No full text
    \u3cp\u3ePURPOSE: Surface transmit arrays used in ultra-high field body MRI require local specific absorption rate (SAR) assessment. As local SAR cannot be measured directly, local SAR is determined by simulations using dielectric patient models. In this study, the inter-patient local SAR variation is investigated for 7T prostate imaging with the single-side adapted dipole antenna array.\u3c/p\u3e\u3cp\u3eMETHOD: Four-dedicated dielectric models were created by segmenting Dixon water-fat separated images that were obtained from four subjects with a 1.5T scanner and the surface array in place. Electromagnetic simulations were performed to calculate the SAR distribution for each model. Radio frequency (RF) exposure variations were determined by analyzing the SAR(10g) distributions (1) with one element active, (2) using a Q-matrix eigenvalue/eigenvector approach, (3) with the maximum potential SAR in each voxel, and (4) for a phase shimmed prostate measurement.\u3c/p\u3e\u3cp\u3eRESULTS: Maximum potential local SAR levels for 1 W time-averaged accepted power per transmit channel range from 4.1 to 7.1 W/kg.\u3c/p\u3e\u3cp\u3eCONCLUSION: These variations show that one model is not sufficient to determine safe scan settings. For the operation of the surface array conservative power settings were derived based on a worst-case SAR evaluation and the most SAR-sensitive body model.\u3c/p\u3

    Characterization of transceive surface element designs for 7 tesla magnetic resonance imaging of the prostate:radiative antenna and microstrip

    No full text
    \u3cp\u3eUltra-high field magnetic resonance (≥7 tesla) imaging (MRI) faces challenges with respect to efficient spin excitation and signal reception from deeply situated organs. Traditional radio frequency surface coil designs relying on near-field coupling are suboptimal at high field strengths. Better signal penetration can be obtained by designing a radiative antenna in which the energy flux is directed to the target location. In this paper, two different radiative antenna designs are investigated to be used as transceive elements, which employ different dielectric permittivities for the antenna substrate. Their transmit and receive performances in terms of B(+)(1), local SAR (specific absorption rate) and SNR (signal-to-noise ratio) were compared using extensive electromagnetic simulations and MRI measurements with traditional surface microstrip coils. Both simulations and measurements demonstrated that the radiative element shows twofold gain in B(+)(1) and SNR at 10 cm depth, and additionally a comparable SAR peak value. In terms of transmit performance, the radiative antenna with a dielectric permittivity of 37 showed a 24% more favorable local SAR(10g avg)/(B(+)(1))(2) ratio than the radiative antenna with a dielectric permittivity of 90. In receive, the radiative element with a dielectric permittivity of 90 resulted in a 20% higher SNR for shallow depths, but for larger depths this difference diminished compared to the radiative element with a dielectric permittivity of 37. Therefore, to image deep anatomical regions effectively, the radiative antenna with a dielectric permittivity of 37 is favorable.\u3c/p\u3

    A local multi-transmit coil combined with a high-density receive array for cerebellar fMRI at 7 T

    Get PDF
    The human cerebellum is involved in a wide array of functions, ranging from motor control to cognitive control, and as such is of great neuroscientific interest. However, its function is underexplored in vivo, due to its small size, its dense structure and its placement at the bottom of the brain, where transmit and receive fields are suboptimal. In this study, we combined two dense coil arrays of 16 small surface receive elements each with a transmit array of three antenna elements to improve BOLD sensitivity in the human cerebellum at 7 T. Our results showed improved B (1) (+) and SNR close to the surface as well as g‐factor gains compared with a commercial coil designed for whole‐head imaging. This resulted in improved signal stability and large gains in the spatial extent of the activation close to the surface (<3.5 cm), while good performance was retained deeper in the cerebellum. Modulating the phase of the transmit elements of the head coil to constructively interfere in the cerebellum improved the B (1) (+), resulting in a temporal SNR gain. Overall, our results show that a dedicated transmit array along with the SNR gains of surface coil arrays can improve cerebellar imaging, at the cost of a decreased field of view and increased signal inhomogeneity

    Design of a radiative surface coil array element at 7 T:the single-side adapted dipole antenna

    No full text
    \u3cp\u3eUltra high field MR imaging (≥7 T) of deeply located targets in the body is facing some radiofrequency-field related challenges: interference patterns, reduced penetration depth, and higher Specific Absorbtion Ratio (SAR) levels. These can be alleviated by redesigning the elements of the transmit or transceive array. This is because at these high excitation field (B \u3csub\u3e1\u3c/sub\u3e) frequencies, conventional array element designs may have become suboptimal. In this work, an alternative design approach is presented, regarding coil array elements as antennas. Following this approach, the Poynting vector of the element should be oriented towards the imaging target region. The single-side adapted dipole antenna is a novel design that fulfills this requirement. The performance of this design as a transmit coil array element has been characterized by comparison with three other, more conventional designs using finite difference time domain (FDTD) simulations and B +1 measurements on a phantom. Results show that the B +1 level at the deeper regions is higher while maintaining relatively low SAR levels. Also, the B +1 field distribution is more symmetrical and more uniform, promising better image homogeneity. Eight radiative antennas have been combined into a belt-like surface array for prostate imaging. T \u3csub\u3e1\u3c/sub\u3e-weighted (T1W) and T \u3csub\u3e2\u3c/sub\u3e-weighted (T2W) volunteer images are presented along with B +1 measurements to demonstrate the improved efficiency.\u3c/p\u3

    Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends

    No full text
    The electro-optical properties of thin films of electron donor-acceptor blends of a fluorene copolymer (PF10TBT) and a fullerene derivative (PCBM) were studied. Transmission electron microscopy shows that in these films nanocrystalline PCBM clusters are formed at high PCBM content. For all concentrations, a charge transfer (CT) transition is observed with absorption spectroscopy, photoluminescence, and electroluminescence. The CT emission is used as a probe to investigate the dissociation of CT excited states at the donor-acceptor interface in photovoltaic devices, as a function of an applied external electric field and PCBM concentration. We find that the maximum of the CT emission shifts to lower energy and decreases in intensity with higher PCBM content. We explain the red shift of the emission and the lowering of the open-circuit voltage (VOC) of photovoltaic devices prepared from these blends with the higher relative permittivity of PCBM (?r = 4.0) compared to that of the polymer (?r = 3.4), stabilizing the energy (ECT) of CT states and of the free charge carriers in blends with higher PCBM concentration. We show that the CT state has a short decay time (? = ca. 4 ns) that is reduced by the application of an external electric field or with increasing PCBM content. The field-induced quenching can be explained quantitatively with the Onsager-Braun model for the dissociation of the CT states when including a high electron mobility in nanocrystalline PCBM clusters. Furthermore, photoinduced absorption spectroscopy shows that increasing the PCBM concentration reduces the yield of neutral triplet excitons forming via electron-hole recombination, and increases the lifetime of radical cations. The presence of nanocrystalline domains with high local carrier mobility of at least one of the two components in an organic heterojunction may explain efficient dissociation of CT states into free charge carriers. © 2008 American Chemical Societ
    corecore