6,913 research outputs found

    Particle acceleration and the origin of gamma-ray emission from Fermi Bubbles

    Get PDF
    Fermi LAT has discovered two extended gamma-ray bubbles above and below the galactic plane. We propose that their origin is due to the energy release in the Galactic center (GC) as a result of quasi-periodic star accretion onto the central black hole. Shocks generated by these processes propagate into the Galactic halo and accelerate particles there. We show that electrons accelerated up to ~10 TeV may be responsible for the observed gamma-ray emission of the bubbles as a result of inverse Compton (IC) scattering on the relic photons. We also suggest that the Bubble could generate the flux of CR protons at energies > 10^15 eV because the shocks in the Bubble have much larger length scales and longer lifetimes in comparison with those in SNRs. This may explain the the CR spectrum above the knee.Comment: 5 pages, 4 figures. Expanded version of the contribution to the 32nd ICRC, Beijing, #0589. To appear in the proceeding

    The Size Distribution of Kuiper Belt Objects

    Full text link
    We describe analytical and numerical collisional evolution calculations for the size distribution of icy bodies in the Kuiper Belt. For a wide range of bulk properties, initial masses, and orbital parameters, our results yield power-law cumulative size distributions, N_C propto r^{-q}, with q_L = 3.5 for large bodies with radii of 10-100 km, and q_s = 2.5-3 for small bodies with radii lesss than 0.1-1 km. The transition between the two power laws occurs at a break radius of 1-30 km. The break radius is more sensitive to the initial mass in the Kuiper Belt and the amount of stirring by Neptune than the bulk properties of individual Kuiper Belt objects (KBOs). Comparisons with observations indicate that most models can explain the observed sky surface density of KBOs for red magnitudes, R = 22-27. For R 28, the model surface density is sensitive to the amount of stirring by Neptune, suggesting that the size distribution of icy planets in the outer solar system provides independent constraints on the formation of Neptune.Comment: 24 pages of text, 12 figures; to appear in the Astronomical Journal, October 200

    De-Excitation Gamma-ray Line Emission from the Galactic Center

    No full text
    International audienceA future detection of de-excitation gamma-ray lines from the Galactic center region would provide unique information on the high-energy processes induced by the the central black hole and the physical conditions of the emitting region. We analyse the intensity of nuclear de-excitation lines in the direction of the Galactic center produced by subrelativistic protons, which are generated by star capture by the central black hole. With the metallicity two times higher than the solar one the total flux in gamma-ray lines of energies below 8 MeV is about 10−4 cm−2 s−1. The most promising lines for detection are those at 4.44 and 6.2 MeV, with a predicted flux in each line of 10−5 photons cm−2 s−1. We also analyze the possibility of detection of these lines by INTEGRAL and future missions

    Planet Formation in the Outer Solar System

    Get PDF
    This paper reviews coagulation models for planet formation in the Kuiper Belt, emphasizing links to recent observations of our and other solar systems. At heliocentric distances of 35-50 AU, single annulus and multiannulus planetesimal accretion calculations produce several 1000 km or larger planets and many 50-500 km objects on timescales of 10-30 Myr in a Minimum Mass Solar Nebula. Planets form more rapidly in more massive nebulae. All models yield two power law cumulative size distributions, N_C propto r^{-q} with q = 3.0-3.5 for radii larger than 10 km and N_C propto r^{-2.5} for radii less than 1 km. These size distributions are consistent with observations of Kuiper Belt objects acquired during the past decade. Once large objects form at 35-50 AU, gravitational stirring leads to a collisional cascade where 0.1-10 km objects are ground to dust. The collisional cascade removes 80% to 90% of the initial mass in the nebula in roughly 1 Gyr. This dust production rate is comparable to rates inferred for alpha Lyr, beta Pic, and other extrasolar debris disk systems.Comment: invited review for PASP, March 2002. 33 pages of text and 12 figure

    In-situ acceleration of subrelativistic electrons in the Coma halo and the halo's influence on the Sunyaev-Zeldovich effect

    Get PDF
    The stochastic acceleration of subrelativistic electrons from a background plasma is studied in order to find a possible explanation of the hard X-ray (HXR) emission detected from the Coma cluster. We calculate the necessary energy supply as a function of the plasma temperature and of the electron energy. We show that, for the same value of the HXR flux, the energy supply changes gradually from its high value (when emitting particle are non-thermal) to lower values (when the electrons are thermal). The kinetic equations we use include terms describing particle thermalization as well as momentum diffusion due to the Fermi II acceleration. We show that the temporal evolution of the particle distribution function has, at its final stationary stage, a rather specific form: it cannot be described by simple exponential or power-law expressions. A broad transfer region is formed by Coulomb collisions at energies between the Maxwellian and power-law parts of the distribution function. In this region the radiative lifetime of a single electron differs greatly from the lifetime of the distribution function as a whole. For a plasma temperature of 8 keV, the particles emitting bremsstrahlung at 20-80 keV lie in this quasi-thermal regime. We show that the energy supply required by quasi-thermal electrons to produce the observed HXR flux from Coma is one or two orders of magnitude smaller than the value derived from the assumption of a nonthermal origin of the emitting particles. This result may solve the problem of rapid cluster overheating by nonthermal electrons. We finally predict the change in Coma's SZ effect caused by the distortions of the Maxwellian electron spectrum, and we show that evidence for acceleration of subrelativistic electrons can be derived from detailed spectral measurements.Comment: 14 pages, 11 figures, A&A in pres
    • 

    corecore