3 research outputs found
Demographics and Medication Use of Patients with Late-Onset Alzheimer's Disease in Hong Kong
BACKGROUND: Alzheimer's disease (AD) is the most common cause of dementia in the elderly population. However, epidemiological studies on the demographics of AD in Hong Kong population are lacking. OBJECTIVE: We investigated the demographics, comorbidities, mortality rates, and medication use of patients with AD in Hong Kong to understand how the disease has been managed locally. METHODS: This was a collaborative study of The Hong Kong University of Science and Technology and the Hospital Authority Data Collaboration Lab. We analyzed the demographic data, clinical records, diagnoses, and medication records of patients with AD under the care of the Hospital Authority between January 1, 2007 and December 31, 2017. RESULTS: We identified 23,467 patients diagnosed with AD. The median age at diagnosis was 84 years old, and 71% of patients were female. The most common comorbidity was hypertension (52.6%). 39.9% of patients received medications for dementia; of those, 68.4% had taken those medications for >  1 year. Compared to nonusers, long-term AD medication users had a significantly younger age of AD onset and were taking more lipid-regulating medication, diabetes medication, or antidepressants. Surprisingly, the use of antipsychotics in patients with AD was quite common; 50.7% of patients had received any type of antipsychotic during disease progression. CONCLUSION: This study provides detailed information on the demographics and medication use of patients with AD in Hong Kong. The data from this AD cohort will aid our future research aiming to identify potential AD risk factors and associations between AD and other diseases
Deep learning-based polygenic risk analysis for Alzheimer's disease prediction
BACKGROUND: The polygenic nature of Alzheimer's disease (AD) suggests that multiple variants jointly contribute to disease susceptibility. As an individual's genetic variants are constant throughout life, evaluating the combined effects of multiple disease-associated genetic risks enables reliable AD risk prediction. Because of the complexity of genomic data, current statistical analyses cannot comprehensively capture the polygenic risk of AD, resulting in unsatisfactory disease risk prediction. However, deep learning methods, which capture nonlinearity within high-dimensional genomic data, may enable more accurate disease risk prediction and improve our understanding of AD etiology. Accordingly, we developed deep learning neural network models for modeling AD polygenic risk. METHODS: We constructed neural network models to model AD polygenic risk and compared them with the widely used weighted polygenic risk score and lasso models. We conducted robust linear regression analysis to investigate the relationship between the AD polygenic risk derived from deep learning methods and AD endophenotypes (i.e., plasma biomarkers and individual cognitive performance). We stratified individuals by applying unsupervised clustering to the outputs from the hidden layers of the neural network model. RESULTS: The deep learning models outperform other statistical models for modeling AD risk. Moreover, the polygenic risk derived from the deep learning models enables the identification of disease-associated biological pathways and the stratification of individuals according to distinct pathological mechanisms. CONCLUSION: Our results suggest that deep learning methods are effective for modeling the genetic risks of AD and other diseases, classifying disease risks, and uncovering disease mechanisms