68 research outputs found

    Using Operational Analysis to Improve Access to Pulmonary Function Testing

    Get PDF
    Background. Timely pulmonary function testing is crucial to improving diagnosis and treatment of pulmonary diseases. Perceptions of poor access at an academic pulmonary function laboratory prompted analysis of system demand and capacity to identify factors contributing to poor access. Methods. Surveys and interviews identified stakeholder perspectives on operational processes and access challenges. Retrospective data on testing demand and resource capacity was analyzed to understand utilization of testing resources. Results. Qualitative analysis demonstrated that stakeholder groups had discrepant views on access and capacity in the laboratory. Mean daily resource utilization was 0.64 (SD 0.15), with monthly average utilization consistently less than 0.75. Reserved testing slots for subspecialty clinics were poorly utilized, leaving many testing slots unfilled. When subspecialty demand exceeded number of reserved slots, there was sufficient capacity in the pulmonary function schedule to accommodate added demand. Findings were shared with stakeholders and influenced scheduling process improvements. Conclusion. This study highlights the importance of operational data to identify causes of poor access, guide system decision-making, and determine effects of improvement initiatives in a variety of healthcare settings. Importantly, simple operational analysis can help to improve efficiency of health systems with little or no added financial investment

    Glucose intolerance and gestational diabetes risk in relation to sleep duration and snoring during pregnancy: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insufficient sleep and poor sleep quality, considered endemic in modern society, are associated with obesity, impaired glucose tolerance and diabetes. Little, however, is known about the consequences of insufficient sleep and poor sleep quality during pregnancy on glucose tolerance and gestational diabetes.</p> <p>Methods</p> <p>A cohort of 1,290 women was interviewed during early pregnancy. We collected information about sleep duration and snoring during early pregnancy. Results from screening and diagnostic testing for gestational diabetes mellitus (GDM) were abstracted from medical records. Generalized linear models were fitted to derive relative risk (RR) and 95% confidence intervals (95% CIs) of GDM associated with sleep duration and snoring, respectively.</p> <p>Results</p> <p>After adjusting for maternal age and race/ethnicity, GDM risk was increased among women sleeping ≤ 4 hours compared with those sleeping 9 hours per night (RR = 5.56; 95% CI 1.31-23.69). The corresponding RR for lean women (<25 kg/m<sup>2</sup>) was 3.23 (95% CI 0.34-30.41) and 9.83 (95% CI 1.12-86.32) for overweight women (≥ 25 kg/m<sup>2</sup>). Overall, snoring was associated with a 1.86-fold increased risk of GDM (RR = 1.86; 95% CI 0.88-3.94). The risk of GDM was particularly elevated among overweight women who snored. Compared with lean women who did not snore, those who were overweight and snored had a 6.9-fold increased risk of GDM (95% CI 2.87-16.6).</p> <p>Conclusions</p> <p>These preliminary findings suggest associations of short sleep duration and snoring with glucose intolerance and GDM. Though consistent with studies of men and non-pregnant women, larger studies that include objective measures of sleep duration, quality and apnea are needed to obtain more precise estimates of observed associations.</p

    Ankyrin repeat-rich membrane spanning protein (Kidins220) is required for neurotrophin and ephrin receptor-dependent dendrite development

    No full text
    Dendrites are the primary sites on neurons for receiving and integrating inputs from their presynaptic partners. Defects in dendrite development perturb the formation of neural circuitry and impair information processing in the brain. Extracellular cues are important for shaping the dendritic morphogenesis, but the underlying molecular mechanisms are not well understood. In this study, we examined the role of ARMS (ankyrin repeat-rich membrane spanning protein), also known as Kidins220 (kinase D-interacting substrate of 220 kDa), previously identified as a downstream target of neurotrophin and ephrin receptors, in dendrite development. We report here that knockdown of ARMS/Kidins220 by in utero electroporation impairs dendritic branching in mouse cerebral cortex, and silencing of ARMS/Kidins220 in primary rat hippocampal neurons results in a significant decrease in the length, number, and complexity of the dendritic arbors. Overexpression of cell surface receptor tyrosine kinases, including TrkB and EphB2, in ARMS/Kidins220-deficient neurons can partially rescue the defective dendritic phenotype. More importantly, we show that PI3K (phosphoinositide-3-kinase)- and Akt-mediated signaling pathway is crucial for ARMS/Kidins220-dependent dendrite development. Furthermore, loss of ARMS/Kidins220 significantly reduced the clustering of EphB2 receptor signaling complex in neurons. Our results collectively suggest that ARMS/Kidins220 is a key player in organizing the signaling complex to transduce the extracellular stimuli to cellular responses during dendrite development. © 2012 the authors
    corecore