6 research outputs found

    Partial Power Processing Based Converter for Electric Vehicle Fast Charging Stations

    Get PDF
    This paper focuses on the design of a charging unit for an electric vehicle fast charging station. With this purpose, in first place, different solutions that exist for fast charging stations are described through a brief introduction. Then, partial power processing architectures are introduced and proposed as attractive strategies to improve the performance of this type of applications. Furthermore, through a series of simulations, it is observed that partial power processing based converters obtain reduced processed power ratio and efficiency results compared to conventional full power converters. So, with the aim of verifying the conclusions obtained through the simulations, two downscaled prototypes are assembled and tested. Finally, it is concluded that, in case galvanic isolation is not required for the charging unit converter, partial power converters are smaller and more efficient alternatives than conventional full power converters

    Review of Architectures Based on Partial Power Processing for DC-DC Applications

    Get PDF
    This paper presents a review of advanced architectures based on the partial power processing concept, whose main objective is to achieve a reduction of the power processed by the converter. If the power processed by the converter is decreased, the power losses generated by the power converter are reduced, obtaining lower sized converters and higher system efficiencies. Through the review 3 different partial power processing strategies are distinguished: Differential Power Converters, Partial Power Converters and Mixed strategies. Each strategy is subdivided into smaller groups that entail different architectures with their own advantages and disadvantages. Also, due to the lack of agreement that exists in the sources around the naming of the different architectures, this paper seeks to stablish a nomenclature that avoids confusion when indexing this type of architectures. Regarding Partial Power Converters an extensive application oriented description is also developed. Finally, the main conclusions obtained through the review are presented

    Medium-Voltage AC Static Switch Solution to Feed Neutral Section in a High-Speed Railway System

    Get PDF
    A high-speed train (HST) is a single-phase load supplied by a three-phase AC grid. The HST produces unbalanced three-line currents affecting the power quality of the grid. To balance the asymmetries on average, railway feeding sections are supplied that rotate the three phases of the grid. An electric isolation segment, called the neutral section (NS), between different sections is necessary. The HST must pass through this 1.6 km NS without power supply. In this paper, a medium-voltage AC static switch solution to feed the high-speed train in the NS is proposed. Thyristor technology is selected to design the 25 KVAC static switch. A medium-voltage power electronics procedure design is proposed to ensure proper operation in the final application. An NS operation is analyzed to identify impacts within the electric system and solution requirements are developed. Then, a low-scale prototype is used to experimentally validate the solution based on thyristor technology and the medium-voltage AC static switch is designed. Limitations on power and voltage at the Mondragon University Medium-Voltage Laboratory do not allow testing of the AC static switch at nominal conditions. A partial test procedure to test sections of the AC static switch is proposed and applied to validate the solution. Finally, experimental results for the Cordoba–Malaga (Spain) high-speed railway in real conditions with an HST crossing the NS at 300 km/h are shown

    Partial state-of-charge mitigation in standalone photovoltaic hybrid storage systems

    Get PDF
    Energy Storage in photovoltaic installations has increased in popularity in recent years due to the improvement in solar panel technology and energy storage systems. In several places where the grid is not available, in remote isolated rural locations or developing countries, isolated photovoltaic installations are one of the main options to power DC micro-grids. In these scenarios, energy storage elements are mandatory due to the natural day-night cycles and low irradiation periods. Traditionally, lead-acid batteries have been responsible for this task, due to their availability and low cost. However, the intermittent features of the solar irradiance patterns and load demand, generate multiple shallow charge–discharge cycles or high power pulses, which worsen the performance of these batteries. Some Hybrid Energy Storage Systems (HESSs) have been reported in the literature to enhance the lifetime and power capabilities of these storage elements, but they are not intended to overcome the Partial State of Charge (PSoC) issue caused by daily cycles, which has an e ect on the short and mid-term performance of the system. This paper studies the impact of the already proposed HESSs on PSoC operation, establishing the optimal hybrid ratios, and implementing them in a real installation with a satisfactory outcome
    corecore