5 research outputs found

    Nonlinear modes for the Gross-Pitaevskii equation -- demonstrative computation approach

    Full text link
    A method for the study of steady-state nonlinear modes for Gross-Pitaevskii equation (GPE) is described. It is based on exact statement about coding of the steady-state solutions of GPE which vanish as x+x\to+\infty by reals. This allows to fulfill {\it demonstrative computation} of nonlinear modes of GPE i.e. the computation which allows to guarantee that {\it all} nonlinear modes within a given range of parameters have been found. The method has been applied to GPE with quadratic and double-well potential, for both, repulsive and attractive nonlinearities. The bifurcation diagrams of nonlinear modes in these cases are represented. The stability of these modes has been discussed.Comment: 21 pages, 6 figure

    Classification of solutions of a system of nonlinear diffusion equations in a neighborhood of a bifurcation point

    No full text

    Methods to reduce non-linear mechanical systems for instability computation

    No full text
    corecore