9,505 research outputs found

    Spin precession in the Dvali-Gabadadze-Porrati braneworld scenario

    Full text link
    In this letter we work out the secular precession of the spin of a gyroscope in geodesic motion around a central mass in the framework of the Dvali-Gabadadze-Porrati multidimensional gravity model. Such an effect, which depends on the mass of the central body and on the orbit radius of the gyroscope, contrary to the precessions of the orbital elements of the orbit of a test body, is far too small to be detected.Comment: Latex, 5 pages, no figures, no tables, 10 reference

    On a new observable for measuring the Lense-Thirring effect with Satellite Laser Ranging

    Get PDF
    In this paper we present a rather extensive error budget for the difference of the perigees of a pair of supplementary SLR satellites aimed to the detection of the Lense-Thirring effect.Comment: LaTex2e, 14 pages, 1 table, no figures. Some changes and additions to the abstract, Introduction and Conclusions. References updated, typos corrected. Equation corrected. To appear in General Relativity and Gravitatio

    Plasmons in topological insulator cylindrical nanowires

    Full text link
    We present a theoretical analysis of Dirac magneto-plasmons in topological insulator nanowires. We discuss a cylindrical geometry where Berry phase effects induce the opening of a gap at the neutrality point. By taking into account surface electron wave functions introduced in previous papers and within the random phase approximation, we provide an analytical form of the dynamic structure factor. Dispersions and spectral weights of Dirac plasmons are studied with varying the radius of the cylinder, the surface doping, and the strength of an external magnetic field. We show that, at zero surface doping, inter-band damped plasmon-like excitations form at the surface and survive at low electron surface dopings (∌1010cm−2\sim 10^{10} cm^{-2} ). Then, we point out that the plasmon excitations are sensitive to the Berry phase gap closure when an external magnetic field close to half quantum flux is introduced. Indeed, a well-defined magneto-plasmon peak is observed at lower energies upon the application of the magnetic field. Finally, the increase of the surface doping induces a crossover from damped inter-band to sharp intra-band magneto-plasmons which, as expected for large radii and dopings (∌1012cm−2\sim 10^{12} cm^{-2}), approach the proper limit of a two-dimensional surface.Comment: 18 pages, 11 figures, 2 Appendice

    The impact of the new CHAMP and GRACE Earth gravity models on the measurement of the general relativistic Lense--Thirring effect with the LAGEOS and LAGEOS II satellites

    Full text link
    Among the effects predicted by the General Theory of Relativity for the orbital motion of a test particle, the post-Newtonian gravitomagnetic Lense-Thirring effect is very interesting and, up to now, there is not yet an undisputable experimental direct test of it. To date, the data analysis of the orbits of the existing geodetic LAGEOS and LAGEOS II satellites has yielded a test of the Lense-Thirring effect with a claimed accuracy of 20%-30%. According to some scientists such estimates could be optimistic. Here we wish to discuss the improvements obtainable in this measurement, in terms of reliability of the evaluation of the systematic error and reduction of its magnitude, due to the new CHAMP and GRACE Earth gravity models.Comment: LaTex2e, 6 pages, no figures, no tables. Paper presented at 2nd CHAMP science meeting, Potsdam, 1-4 September 200

    The impact of tidal errors on the determination of the Lense-Thirring effect from satellite laser ranging

    Full text link
    The general relativistic Lense-Thirring effect can be detected by means of a suitable combination of orbital residuals of the laser-ranged LAGEOS and LAGEOS II satellites. While this observable is not affected by the orbital perturbation induced by the zonal Earth solid and ocean tides, it is sensitive to those generated by the tesseral and sectorial tides. The assessment of their influence on the measurement of the parameter mu, with which the gravitomagnetic effect is accounted for, is the goal of this paper. After simulating the combined residual curve by calculating accurately the mismodeling of the more effective tidal perturbations, it has been found that, while the solid tides affect the recovery of mu at a level always well below 1%, for the ocean tides and the other long-period signals Delta mu depends strongly on the observational period and the noise level: Delta mu(tides) amounts to almost 2% after 7 years. The aliasing effect of K1 l=3 p=1 tide and SRP(4241) solar radiation pressure harmonic, with periods longer than 4 years, on the perigee of LAGEOS II yield to a maximum systematic uncertainty on \m_{LT} of less than 4% over different observational periods. The zonal 18.6-year tide does not affect the combined residuals.Comment: 24 pages, 4 tables, 6 figures, submitted to Int. Journal of Mod. Phys. D. Changes in auctorship, references and conten

    The effect of tides on the Sculptor dwarf spheroidal galaxy

    Full text link
    Dwarf spheroidal galaxies (dSphs) appear to be some of the most dark matter dominated objects in the Universe. Their dynamical masses are commonly derived using the kinematics of stars under the assumption of equilibrium. However, these objects are satellites of massive galaxies (e.g.\ the Milky Way) and thus can be influenced by their tidal fields. We investigate the implication of the assumption of equilibrium focusing on the Sculptor dSph by means of ad-hoc NN-body simulations tuned to reproduce the observed properties of Sculptor following the evolution along some observationally motivated orbits in the Milky Way gravitational field. For this purpose, we used state-of-the-art spectroscopic and photometric samples of Sculptor's stars. We found that the stellar component of the simulated object is not directly influenced by the tidal field, while ≈30%−60%\approx 30\%-60\% the mass of the more diffuse DM halo is stripped. We conclude that, considering the most recent estimate of the Sculptor proper motion, the system is not affected by the tides and the stellar kinematics represents a robust tracer of the internal dynamics. In the simulations that match the observed properties of Sculptor, the present-day dark-to-luminous mass ratio is ≈6\approx 6 within the stellar half-light radius (≈0.3\approx0.3 kpc) and >50>50 within the maximum radius of the analysed dataset (≈1.5∘≈2\approx1.5^\circ\approx2 kpc).Comment: 19 pages, 10 figures, accepted for publication in MNRAS. V3: updated after editor comments See our playlist for simulation videos: https://av.tib.eu/series/633/supplemental+videos+of+the+paper+the+effect+of+tides+on+the+sculptor+dwarf+spheroidal+galax

    Super-ASTROD: Probing primordial gravitational waves and mapping the outer solar system

    Full text link
    Super-ASTROD (Super Astrodynamical Space Test of Relativity using Optical Devices or ASTROD III) is a mission concept with 3-5 spacecraft in 5 AU orbits together with an Earth-Sun L1/L2 spacecraft ranging optically with one another to probe primordial gravitational-waves with frequencies 0.1 microHz - 1 mHz, to test fundamental laws of spacetime and to map the outer solar system. In this paper we address to its scientific goals, orbit and payload selection, and sensitivity to gravitational waves.Comment: 7 pages, 1 figure, presented to 7th International LISA Symposium, 16-20 June 2008, Barcelona; submitted to Classical and Quantum Gravity; presentation improve
    • 

    corecore