8,819 research outputs found
Perspectives in measuring the PPN parameters beta and gamma in the Earth's gravitational fields with the CHAMP/GRACE models
The current bounds on the PPN parameters gamma and beta are of the order of
10^-4-10^-5. Various missions aimed at improving such limits by several orders
of magnitude have more or less recently been proposed like LATOR, ASTROD,
BepiColombo and GAIA. They involve the use of various spacecraft, to be
launched along interplanetary trajectories, for measuring the effects of the
solar gravity on the propagation of electromagnetic waves. In this paper we
investigate what is needed to measure the combination nu=(2+2gamma-beta)/3 of
the post-Newtonian gravitoelectric Einstein perigee precession of a test
particle to an accuracy of about 10^-5 with a pair of drag-free spacecraft in
the Earth's gravitational field. It turns out that the latest gravity models
from the dedicated CHAMP and GRACE missions would allow to reduce the
systematic error of gravitational origin just to this demanding level of
accuracy. In regard to the non-gravitational errors, the spectral noise density
of the drag-free sensors required to reach such level of accuracy would amounts
to 10^-8-10^-9 cm s^-2 Hz^-1/2 over very low frequencies. Although not yet
obtainable with the present technologies, such level of compensation is much
less demanding than those required for, e.g., LISA. As a by-product, an
independent measurement of the post-Newtonian gravitomagnetic Lense-Thirring
effect with a 0.9% accuracy would be possible as well. The forthcoming Earth
gravity models from CHAMP and GRACE will further reduce the systematic
gravitational errors in both of such tests.Comment: LaTex2e, 14 pages, 3 tables, no figures, 75 references. To appear in
Int. J. Mod. Phys.
Secular increase of the Astronomical Unit and perihelion precessions as tests of the Dvali-Gabadadze-Porrati multi-dimensional braneworld scenario
An unexpected secular increase of the Astronomical Unit, the length scale of
the Solar System, has recently been reported by three different research groups
(Krasinsky and Brumberg, Pitjeva, Standish). The latest JPL measurements amount
to 7+-2 m cy^-1. At present, there are no explanations able to accommodate such
an observed phenomenon, neither in the realm of classical physics nor in the
usual four-dimensional framework of the Einsteinian General Relativity. The
Dvali-Gabadadze-Porrati braneworld scenario, which is a multi-dimensional model
of gravity aimed to the explanation of the observed cosmic acceleration without
dark energy, predicts, among other things, a perihelion secular shift, due to
Lue and Starkman, of 5 10^-4 arcsec cy^-1 for all the planets of the Solar
System. It yields a variation of about 6 m cy^-1 for the Earth-Sun distance
which is compatible at 1-sigma level with the observed rate of the Astronomical
Unit. The recently measured corrections to the secular motions of the perihelia
of the inner planets of the Solar System are in agreement, at 1-sigma level,
with the predicted value of the Lue-Starkman effect for Mercury and Mars and at
2-sigma level for the Earth.Comment: LaTex2e, 7 pages, no figures, no tables, 13 references. Minor
correction
On a new observable for measuring the Lense-Thirring effect with Satellite Laser Ranging
In this paper we present a rather extensive error budget for the difference
of the perigees of a pair of supplementary SLR satellites aimed to the
detection of the Lense-Thirring effect.Comment: LaTex2e, 14 pages, 1 table, no figures. Some changes and additions to
the abstract, Introduction and Conclusions. References updated, typos
corrected. Equation corrected. To appear in General Relativity and
Gravitatio
On the effects of the Dvali-Gabadadze-Porrati braneworld gravity on the orbital motion of a test particle
In this paper we explicitly work out the secular perturbations induced on all
the Keplerian orbital elements of a test body to order O(e^2) in the
eccentricity e by the weak-field long-range modifications of the usual
Newton-Einstein gravity due to the Dvali-Gabadadze-Porrati (DGP) braneworld
model. The Gauss perturbative scheme is used. It turns out that the argument of
pericentre and the mean anomaly are affected by secular rates which are
independent of the semimajor axis of the orbit of the test particle. The first
nonvaishing eccentricity-dependent corrections are of order O(e^2). For
circular orbits the Lue-Starkman (LS) effect on the pericentre is obtained.
Some observational consequences are discussed for the Solar System planetary
mean longitudes lambda which would undergo a 1.2\cdot 10^-3 arcseconds per
century braneworld secular precession. According to recent data analysis over
92 years for the EPM2004 ephemerides, the 1-sigma formal accuracy in
determining the Martian mean longitude amounts to 3\cdot 10^-3 milliarcseconds,
while the braneworld effect over the same time span would be 1.159
milliarcseconds. The major limiting factor is the 2.6\cdot 10^-3 arcseconds per
century systematic error due to the mismodelling in the Keplerian mean motion
of Mars. A suitable linear combination of the mean longitudes of Mars and Venus
may overcome this problem. The formal, 1-sigma obtainable observational
accuracy would be \sim 7%. The systematic error due to the present-day
uncertainties in the solar quadrupole mass moment, the Keplerian mean motions,
the general relativistic Schwarzschild field and the asteroid ring would amount
to some tens of percent.Comment: LaTex2e, 23 pages, 5 tables, 1 figure, 37 references. Second-order
corrections in eccentricity explicitly added. Typos corrected. References
update
On the perspectives of testing the Dvali-Gabadadze-Porrati gravity model with the outer planets of the Solar System
The multidimensional braneworld gravity model by Dvali, Gabadadze and Porrati
was primarily put forth to explain the observed acceleration of the expansion
of the Universe without resorting to dark energy. One of the most intriguing
features of such a model is that it also predicts small effects on the orbital
motion of test particles which could be tested in such a way that local
measurements at Solar System scales would allow to get information on the
global properties of the Universe. Lue and Starkman derived a secular
extra-perihelion \omega precession of 5\times 10^-4 arcseconds per century,
while Iorio showed that the mean longitude \lambda is affected by a secular
precession of about 10^-3 arcseconds per century. Such effects depend only on
the eccentricities e of the orbits via second-order terms: they are, instead,
independent of their semimajor axes a. Up to now, the observational efforts
focused on the dynamics of the inner planets of the Solar System whose orbits
are the best known via radar ranging. Since the competing Newtonian and
Einsteinian effects like the precessions due to the solar quadrupole mass
moment J2, the gravitoelectric and gravitomagnetic part of the equations of
motion reduce with increasing distances, it would be possible to argue that an
analysis of the orbital dynamics of the outer planets of the Solar System, with
particular emphasis on Saturn because of the ongoing Cassini mission with its
precision ranging instrumentation, could be helpful in evidencing the predicted
new features of motion. In this note we investigate this possibility in view of
the latest results in the planetary ephemeris field. Unfortunately, the current
level of accuracy rules out this appealing possibility and it appears unlikely
that Cassini and GAIA will ameliorate the situation.Comment: LaTex, 22 pages, 2 tables, 10 figures, 27 references. Reference [17]
added, reference [26] updated, caption of figures changed, small change in
section 1.
Gravitomagnetic time-varying effects on the motion of a test particle
We study the effects of a time-varying gravitomagnetic field on the motion of
test particles. Starting from recent results, we consider the gravitomagnetic
field of a source whose spin angular momentum has a linearly time-varying
magnitude. The acceleration due to such a time-varying gravitomagnetic field is
considered as a perturbation of the Newtonian motion, and we explicitly
evaluate the effects of this perturbation on the Keplerian elements of a closed
orbit. The theoretical predictions are compared with actual astronomical and
astrophysical scenarios, both in the solar system and in binary pulsars
systems, in order to evaluate the impact of these effects on real systems.Comment: 8 pages, RevTeX; revised to match the version accepted for
publication in General Relativity and Gravitatio
Conservative evaluation of the uncertainty in the LAGEOS-LAGEOS II Lense-Thirring test
We deal with the test of the general relativistic gravitomagnetic
Lense-Thirring effect currently ongoing in the Earth's gravitational field with
the combined nodes \Omega of the laser-ranged geodetic satellites LAGEOS and
LAGEOS II.
One of the most important source of systematic uncertainty on the orbits of
the LAGEOS satellites, with respect to the Lense-Thirring signature, is the
bias due to the even zonal harmonic coefficients J_L of the multipolar
expansion of the Earth's geopotential which account for the departures from
sphericity of the terrestrial gravitational potential induced by the
centrifugal effects of its diurnal rotation. The issue addressed here is: are
the so far published evaluations of such a systematic error reliable and
realistic? The answer is negative. Indeed, if the difference \Delta J_L among
the even zonals estimated in different global solutions (EIGEN-GRACE02S,
EIGEN-CG03C, GGM02S, GGM03S, ITG-Grace02, ITG-Grace03s, JEM01-RL03B, EGM2008,
AIUB-GRACE01S) is assumed for the uncertainties \delta J_L instead of using
their more or less calibrated covariance sigmas \sigma_{J_L}, it turns out that
the systematic error \delta\mu in the Lense-Thirring measurement is about 3 to
4 times larger than in the evaluations so far published based on the use of the
sigmas of one model at a time separately, amounting up to 37% for the pair
EIGEN-GRACE02S/ITG-Grace03s. The comparison among the other recent GRACE-based
models yields bias as large as about 25-30%. The major discrepancies still
occur for J_4, J_6 and J_8, which are just the zonals the combined
LAGEOS/LAGOES II nodes are most sensitive to.Comment: LaTex, 12 pages, 12 tables, no figures, 64 references. To appear in
Central European Journal of Physics (CEJP
How to reach a few percent level in determining the Lense-Thirring effect?
In this paper we discuss and compare a node-only LAGEOS-LAGEOS II combination
and a node-only LAGEOS-LAGEOS II-Ajisai-Jason1 combination for the
determination of the Lense-Thirring effect. The new combined EIGEN-CG01C Earth
gravity model has been adopted. The second combination cancels the first three
even zonal harmonics along with their secular variations but introduces the
non-gravitational perturbations of Jason1. The first combination is less
sensitive to the non-conservative forces but is sensitive to the secular
variations of the uncancelled even zonal harmonics of low degree J4 and J6
whose impact grows linearly in time.Comment: Latex2e, 22 pag. 1 table, 2 figures, 45 references. Changes in the
Abstract, Introduction and Conclusions. Discussion on the non-gravitational
perturbations on Ajisai and on the impact of the secular rates of the even
zonal harmonics added. EIGEN-CG01C CHAMP+GRACE+terrestrial
gravimetry/altimetry Earth gravity model used. Reference adde
On the Possibility of Measuring the Gravitomagnetic Clock Effect in an Earth Space-Based Experiment
In this paper the effect of the post-Newtonian gravitomagnetic force on the
mean longitudes of a pair of counter-rotating Earth artificial satellites
following almost identical circular equatorial orbits is investigated. The
possibility of measuring it is examined. The observable is the difference of
the times required to in passing from 0 to 2 for both senses of
motion. Such gravitomagnetic time shift, which is independent of the orbital
parameters of the satellites, amounts to 5 s for Earth; it is
cumulative and should be measured after a sufficiently high number of
revolutions. The major limiting factors are the unavoidable imperfect
cancellation of the Keplerian periods, which yields a constraint of 10
cm in knowing the difference between the semimajor axes of the satellites,
and the difference of the inclinations of the orbital planes which, for
, should be less than . A pair of spacecrafts
endowed with a sophisticated intersatellite tracking apparatus and drag-free
control down to 10 cm s Hz level might allow to meet
the stringent requirements posed by such a mission.Comment: LaTex2e, 22 pages, no tables, 1 figure, 38 references. Final version
accepted for publication in Classical and Quantum Gravit
The Exact String Black-Hole behind the hadronic Rindler horizon?
The recently suggested interpretation of the universal hadronic freeze-out
temperature T_f ~ 170 Mev - found for all high energy scattering processes that
produce hadrons: e+ e-, p p, p anti-p, pi p, etc. and N N' (heavy-ion
collisions) - as a Unruh temperature triggers here the search for the
gravitational black-hole that in its near-horizon approximation better
simulates this hadronic phenomenon. To identify such a black-hole we begin our
gravity-gauge theory phenomenologies matching by asking the question: which
black-hole behind that Rindler horizon could reproduce the experimental
behavior of T_f (\sqrt{s}) in N N', where \sqrt{s} is the collision energy.
Provided certain natural assumptions hold, we show that the exact string
black-hole turns out to be the best candidate (as it fits the available data on
T_f (\sqrt{s})) and that its limiting case, the Witten black-hole, is the
unique candidate to explain the constant T_f for all elementary scattering
processes at large energy. We also are able to propose an effective description
of the screening of the hadronic string tension sigma(mu_b) due to the baryon
density effects on T_f.Comment: 15 pages, 2 eps figure
- âŠ