57 research outputs found

    MicroRNA in Cervical Cancer: OncomiRs and Tumor Suppressor miRs in Diagnosis and Treatment

    Get PDF
    Cervical cancer is a female-specific disease with a high incidence and mortality. MicroRNAs (miRNAs) are implicated in posttranscriptional regulation of gene expression and in the pathogenic mechanisms of cancer, suggesting their importance in diagnosis and treatment. miRNAs may have roles in the pathogenesis of cervical cancer based on the increases or decreases in several specific miRNAs found in patients with this disease. The miRNAs implicated in cervical cancer are miR-21, miR-126, and miR-143, and clinical application of these miRNAs for diagnosis and treatment is under investigation. Methods for diagnosis of cervical cancer include analysis of changes in the levels of specific miRNAs in serum and determination of aberrant hypermethylation of miRNAs. Supplementation of miR-143 or inhibition of miR-21 activity in vivo may be therapeutic strategy for cervical cancer. Previous approaches to development of siRNA as a drug have provided information for establishment of therapy based on these approaches, and an anti-miR-21 inhibitor has been developed. miRNAs also have effects on drug resistance and may be useful in combination therapy with other drugs

    Endometrial Cancer and Hypermethylation: Regulation of DNA and MicroRNA by Epigenetics

    Get PDF
    Endometrial cancer is the seventh most common cancer in women worldwide. Therefore elucidation of the pathogenesis and development of effective treatment for endometrial cancer are important. However, several aspects of the mechanism of carcinogenesis in the endometrium remain unclear. Associations with genetic variation and mutations of cancer-related genes have been shown, but these do not provide a complete explanation. Therefore, in recent years, epigenetic mechanisms that do not involve changes in DNA sequences have been examined. Studies aimed at detection of aberrant DNA hypermethylation in cancer cells present in microscopic amounts in vivo and application of the results to cancer diagnosis have also started. Breakdown of the DNA mismatch repair mechanism is thought to play a large role in the development of endometrial cancer, with changes in the expression of the hMLH1 gene being particularly important. Silencing of genes such as APC and CHFR, Sprouty 2, RASSF1A, GPR54, CDH1, and RSK4 by DNA hypermethylation, onset of Lynch syndrome due to hereditary epimutation of hMLH1 and hMSH2 mismatch repair genes, and regulation of gene expression by microRNAs may also underlie the carcinogenic mechanisms of endometrial cancer. Further understanding of these issues may permit development of new therapies

    Relationship between DNA Mismatch Repair Deficiency and Endometrial Cancer

    Get PDF
    Some cases of endometrial cancer are associated with a familial tumor and are referred to as hereditary nonpolyposis colorectal cancer (HNPCC or Lynch syndrome). Lynch syndrome is thought to be induced by germline mutation of the DNA mismatch repair (MMR) gene. An aberration in the MMR gene prevents accurate repair of base mismatches produced during DNA replication. This phenomenon can lead to an increased frequency of errors in target genes involved in carcinogenesis, resulting in cancerization of the cell. On the other hand, aberrant DNA methylation is thought to play a key role in sporadic endometrial carcinogenesis. Hypermethylation of unmethylated CpG islands in the promoter regions of cancer-related genes associated with DNA repair leads to the cell becoming cancerous. Thus, both genetic and epigenetic changes are intricately involved in the process through which cells become cancerous. In this review, we introduce the latest findings on the DNA mismatch repair pathway in endometrial cancer

    Uterus Transplantation: From a Deceased Donor or Living Donor?

    No full text
    Uterus transplantation (UTx) is a new alternative to surrogacy or adaption for women with uterine factor infertility to have a child [...

    Operative and Clinical Outcomes of Minimally Invasive Living-Donor Surgery on Uterus Transplantation: A Literature Review

    No full text
    Background: The surgical approach and choice of drainage veins for uterus transplantation living-donor surgery have been investigated to reduce invasiveness. Methods: A thorough search of the PubMed database was conducted. The search was not limited by language or date of publication. The data were collected on 13 October 2020. Two reviewers independently assessed each article and determined eligibility for inclusion in the review article. Inclusion criteria were English peer-reviewed articles reporting surgical information or postoperative course, articles regarding animal research on UTx, UTx on deceased donors, or not original articles. Results: Of the 51 operations within 26 articles reviewed, the mean operative time was shortest in the laparoscopic approach, and longest in the robot-assisted approach. The mean blood loss was less in the laparoscopic and robot-assisted approaches than in the open approach. In cases where the uterine veins were not preserved, the mean operative time was shortened by each approach and the mean blood loss decreased with the laparoscopic and robot-assisted approaches. Conclusions: These procedures may contribute to less invasive living-donor surgery

    A New Horizon in Reproductive Research with Pluripotent Stem Cells: Successful In Vitro Gametogenesis in Rodents, Its Application to Large Animals, and Future In Vitro Reconstitution of Reproductive Organs Such as “Uteroid” and “Oviductoid”

    No full text
    Recent success in derivation of functional gametes (oocytes and spermatozoa) from pluripotent stem cells (PSCs) of rodents has made it feasible for future application to large animals including endangered species and to ultimately humans. Here, we summarize backgrounds and recent studies on in vitro gametogenesis from rodent PSCs, and similar approaches using PSCs from large animals, including livestock, nonhuman primates (NHPs), and humans. We also describe additional developing approaches for in vitro reconstitution of reproductive organs, such as the ovary (ovarioid), testis (testisoid), and future challenges in the uterus (uteroid) and oviduct (oviductoid), all of which may be derived from PSCs. Once established, these in vitro systems may serve as a robust platform for elucidating the pathology of infertility-related disorders and ectopic pregnancy, principle of reproduction, and artificial biogenesis. Therefore, these possibilities, especially when using human cells, require consideration of ethical issues, and international agreements and guidelines need to be raised before opening “Pandora’s Box”
    corecore