115 research outputs found

    A Quantum Interior Point Method for LPs and SDPs

    Full text link
    We present a quantum interior point method with worst case running time O~(n2.5ξ2μκ3log(1/ϵ))\widetilde{O}(\frac{n^{2.5}}{\xi^{2}} \mu \kappa^3 \log (1/\epsilon)) for SDPs and O~(n1.5ξ2μκ3log(1/ϵ))\widetilde{O}(\frac{n^{1.5}}{\xi^{2}} \mu \kappa^3 \log (1/\epsilon)) for LPs, where the output of our algorithm is a pair of matrices (S,Y)(S,Y) that are ϵ\epsilon-optimal ξ\xi-approximate SDP solutions. The factor μ\mu is at most 2n\sqrt{2}n for SDPs and 2n\sqrt{2n} for LP's, and κ\kappa is an upper bound on the condition number of the intermediate solution matrices. For the case where the intermediate matrices for the interior point method are well conditioned, our method provides a polynomial speedup over the best known classical SDP solvers and interior point based LP solvers, which have a worst case running time of O(n6)O(n^{6}) and O(n3.5)O(n^{3.5}) respectively. Our results build upon recently developed techniques for quantum linear algebra and pave the way for the development of quantum algorithms for a variety of applications in optimization and machine learning.Comment: 32 page

    Statistical Zero Knowledge and quantum one-way functions

    Get PDF
    One-way functions are a very important notion in the field of classical cryptography. Most examples of such functions, including factoring, discrete log or the RSA function, can be, however, inverted with the help of a quantum computer. In this paper, we study one-way functions that are hard to invert even by a quantum adversary and describe a set of problems which are good such candidates. These problems include Graph Non-Isomorphism, approximate Closest Lattice Vector and Group Non-Membership. More generally, we show that any hard instance of Circuit Quantum Sampling gives rise to a quantum one-way function. By the work of Aharonov and Ta-Shma, this implies that any language in Statistical Zero Knowledge which is hard-on-average for quantum computers, leads to a quantum one-way function. Moreover, extending the result of Impagliazzo and Luby to the quantum setting, we prove that quantum distributionally one-way functions are equivalent to quantum one-way functions. Last, we explore the connections between quantum one-way functions and the complexity class QMA and show that, similarly to the classical case, if any of the above candidate problems is QMA-complete then the existence of quantum one-way functions leads to the separation of QMA and AvgBQP.Comment: 20 pages; Computational Complexity, Cryptography and Quantum Physics; Published version, main results unchanged, presentation improve

    Exponential Lower Bound for 2-Query Locally Decodable Codes via a Quantum Argument

    Get PDF
    A locally decodable code encodes n-bit strings x in m-bit codewords C(x), in such a way that one can recover any bit x_i from a corrupted codeword by querying only a few bits of that word. We use a quantum argument to prove that LDCs with 2 classical queries need exponential length: m=2^{Omega(n)}. Previously this was known only for linear codes (Goldreich et al. 02). Our proof shows that a 2-query LDC can be decoded with only 1 quantum query, and then proves an exponential lower bound for such 1-query locally quantum-decodable codes. We also show that q quantum queries allow more succinct LDCs than the best known LDCs with q classical queries. Finally, we give new classical lower bounds and quantum upper bounds for the setting of private information retrieval. In particular, we exhibit a quantum 2-server PIR scheme with O(n^{3/10}) qubits of communication, improving upon the O(n^{1/3}) bits of communication of the best known classical 2-server PIR.Comment: 16 pages Latex. 2nd version: title changed, large parts rewritten, some results added or improve
    corecore