12 research outputs found

    Reduced Renal Mass, Salt-Sensitive Hypertension Is Resistant to Renal Denervation

    No full text
    Aim: Activation of the sympathetic nervous system is common in resistant hypertension (RHT) and also in chronic kidney disease (CKD), a prevalent condition among resistant hypertensives. However, renal nerve ablation lowers blood pressure (BP) only in some patients with RHT. The influence of loss of nephrons per se on the antihypertensive response to renal denervation (RDNx) is unclear and was the focus of this study.Methods: Systemic hemodynamics and sympathetically mediated low frequency oscillations of systolic BP were determined continuously from telemetrically acquired BP recordings in rats before and after surgical excision of ∼80% of renal mass and subsequent RDNx.Results: After reduction of renal mass, rats fed a high salt (HS) diet showed sustained increases in mean arterial pressure (108 ± 3 mmHg to 128 ± 2 mmHg) and suppression of estimated sympathetic activity (∼15%), responses that did not occur with HS before renal ablation. After denervation of the remnant kidney, arterial pressure fell (to 104 ± 4 mmHg), estimated sympathetic activity and heart rate (HR) increased concomitantly, but these changes gradually returned to pre-denervation levels over 2 weeks of follow up. Subsequently, sympathoinhibition with clonidine did not alter arterial pressure while significantly suppressing estimated sympathetic activity and HR.Conclusion: These results indicate that RDNx does not chronically lower arterial pressure in this model of salt-sensitive hypertension associated with substantial nephron loss, but without ischemia and increased sympathetic activity, thus providing further insight into conditions likely to impact the antihypertensive response to renal-specific sympathoinhibition in subjects with CKD

    Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets

    No full text
    Calcific aortic valve disease (CAVD) is a major cause of cardiovascular mortality and morbidity, with increased prevalence and incidence. The underlying mechanisms behind CAVD are complex, and are mainly illustrated by inflammation, mechanical stress (which induces prolonged aortic valve endothelial dysfunction), increased oxidative stress (OS) (which trigger fibrosis), and calcification of valve leaflets. To date, besides aortic valve replacement, there are no specific pharmacological treatments for CAVD. In this review, we describe the mechanisms behind aortic valvular disease, the involvement of OS as a fundamental element in disease progression with predilection in AS, and its two most frequent etiologies (calcific aortic valve disease and bicuspid aortic valve); moreover, we highlight the potential of OS as a future therapeutic target

    Oxidative Stress in Arterial Hypertension (HTN): The Nuclear Factor Erythroid Factor 2-Related Factor 2 (Nrf2) Pathway, Implications and Future Perspectives

    No full text
    Arterial hypertension (HTN) is one of the most prevalent entities globally, characterized by increased incidence and heterogeneous pathophysiology. Among possible etiologies, oxidative stress (OS) is currently extensively studied, with emerging evidence showing its involvement in endothelial dysfunction and in different cardiovascular diseases (CVD) such as HTN, as well as its potential as a therapeutic target. While there is a clear physiological equilibrium between reactive oxygen species (ROS) and antioxidants essential for many cellular functions, excessive levels of ROS lead to vascular cell impairment with decreased nitric oxide (NO) availability and vasoconstriction, which promotes HTN. On the other hand, transcription factors such as nuclear factor erythroid factor 2-related factor 2 (Nrf2) mediate antioxidant response pathways and maintain cellular reduction–oxidation homeostasis, exerting protective effects. In this review, we describe the relationship between OS and hypertension-induced endothelial dysfunction and the involvement and therapeutic potential of Nrf2 in HTN

    MicroRNAs (miRNAs) in Cardiovascular Complications of Rheumatoid Arthritis (RA): What Is New?

    No full text
    Rheumatoid Arthritis (RA) is among the most prevalent and impactful rheumatologic chronic autoimmune diseases (AIDs) worldwide. Within a framework that recognizes both immunological activation and inflammatory pathways, the exact cause of RA remains unclear. It seems however, that RA is initiated by a combination between genetic susceptibility, and environmental triggers, which result in an auto-perpetuating process. The subsequently, systemic inflammation associated with RA is linked with a variety of extra-articular comorbidities, including cardiovascular disease (CVD), resulting in increased mortality and morbidity. Hitherto, vast evidence demonstrated the key role of non-coding RNAs such as microRNAs (miRNAs) in RA, and in RA-CVD related complications. In this descriptive review, we aim to highlight the specific role of miRNAs in autoimmune processes, explicitly on their regulatory roles in the pathogenesis of RA, and its CV consequences, their main role as novel biomarkers, and their possible role as therapeutic targets

    The RAAS Axis and SARS-CoV-2: From Oral to Systemic Manifestations

    No full text
    One of the essential regulators of arterial blood pressure, the renin-angiotensin-aldosterone system (RAAS) seems to be one of the most complex mechanisms in the human body. Since the discovery of its key components and their actions, new substances and functions are still being unraveled. The main pathway begins with the secretion of renin in the kidney and culminates with the synthesis of angiotensin II (Ang II)—a strong vasoconstrictor—thanks to the angiotensin-converting enzyme (ACE). Research conducted in 2000 identified another enzyme, named ACE2, that converts Ang II into Ang-(1–7), a heptapeptide with opposing effects to those of Ang II: vasodilation and anti-inflammatory properties. This particular enzyme became of paramount importance during the last two decades, as a result of the confrontation of the human race with life-threatening epidemics. Multiple studies have been performed in order to uncover the link between ACE2 and human coronaviruses, the results of which we systemized in order to create an overview of the pathogenic mechanism. Human coronaviruses, such as SARS-CoV and SARS-CoV-2, attach to ACE2 via their spike proteins (S), causing the destruction of the enzyme. Because ACE2 limits the production of Ang II (by converting it into Ang-(1–7)), its destruction leads to a dysregulated inflammatory response. The purpose of this review is to decipher the complex pathophysiological mechanisms underlying the multiorgan complications (oral, cardiac, pulmonary, systemic) that appear as a result of the interaction of the SARS CoV-2 virus with the angiotensin-converting enzyme type 2

    Pulmonary Embolism Risk Assessment Using Blood Copeptin Concentration and Pulmonary Arteries Thrombotic Burden Evaluated by Computer Tomography

    No full text
    (1) Background: Pulmonary embolism (PE) represents the third most important cardiovascular cause of death after myocardial infarction and stroke. The proper management of this condition is dependent on adequate risk stratification, due to the life-threatening complications of more aggressive therapies such as thrombolysis. Copeptin is a surrogate marker of vasopressin which is found increased in several cardiovascular conditions. The Mastora score is an imagistic evaluation of the degree of pulmonary arteries thrombotic burden based on computed tomography angiography. In this study, we aimed to evaluate the diagnostic and prognostic role of copeptin in patients with acute PE. Furthermore, we analyzed the relationship between copeptin and Mastora score and their role in PE risk profiling. (2) Methods: We conducted a single center prospective study that included 112 patients with PE and 53 healthy volunteers. Clinical and paraclinical parameters, together with plasma levels of copeptin and the Mastora score, were evaluated in all patients after admission. (3) Results: Copeptin levels were significantly increased in PE patients compared with the general population (26.05 vs. 9.5 pmol/L, p p p = 0.011) and both parameters were strong predictors for adverse clinical events and death. Receiver operating characteristic (ROC) analysis for death within 30 days revealed a copeptin cut-off of 38.36 pmol/L, which presented a specificity of 79.6% and a sensitivity of 88.9%, and a Mastora score cut-off of 82 points, which presented a specificity of 74.8% and a sensitivity of 77.8%. (4) Conclusions: Our results showed that copeptin and the Mastora score are both correlated with adverse cardiovascular events and mortality in PE patients, and this may pave the way for their use in clinical practice, helping physicians to select the best therapeutical management
    corecore