707 research outputs found

    Coupled insights from the palaeoenvironmental, historical and archaeological archives to support social-ecological resilience and the sustainable development goals

    Get PDF
    Many governments and organisations are currently aligning many aspects of their policies and practices to the sustainable development goals (SDGs). Achieving the SDGs should increase social-ecological resilience to shocks like climate change and its impacts. Here, we consider the relationship amongst the three elementsĂąïżœïżœthe SDGs, social-ecological resilience and climate changeĂąïżœïżœas a positive feedback loop. We argue that long-term memory encoded in historical, archaeological and related Ăąïżœïżœpalaeo-dataĂąïżœïżœ is central to understanding each of these elements of the feedback loop, especially when long-term fluctuations are inherent in social-ecological systems and their responses to abrupt change. Yet, there is scant reference to the valuable contribution that can be made by these data from the past in the SDGs or their targets and indicators. The historical and archaeological records emphasise the importance of some key themes running through the SDGs including how diversity, inclusion, learning and innovation can reduce vulnerability to abrupt change, and the role of connectivity. Using paleo-data, we demonstrate how changes in the extent of water-related ecosystems as measured by indicator 6.6.1 may simply be related to natural hydroclimate variability, rather than reflecting actual progress towards Target 6.6. This highlights issues associated with using SDG indicator baselines predicated on short-term and very recent data only. Within the context of the contributions from long-term data to inform the positive feedback loop, we ask whether our current inability to substantively combat anthropogenic climate change threatens achieving both the SDGS and enhanced resilience to climate change itself. We argue that long-term records are central to understanding how and what will improve resilience and enhance our ability to both mitigate and adapt to climate change. However, for uptake of these data to occur, improved understanding of their quality and potential by policymakers and managers is required

    Complement Receptor 1/Cd35 Is a Receptor for Mannan-Binding Lectin

    Get PDF
    Mannan-binding lectin (MBL), a member of the collectin family, is known to have opsonic function, although identification of its cellular receptor has been elusive. Complement C1q, which is homologous to MBL, binds to complement receptor 1 (CR1/CD35), and thus we investigated whether CR1 also functions as the MBL receptor. Radioiodinated MBL bound to recombinant soluble CR1 (sCR1) that had been immobilized on plastic with an apparent equilibrium dissociation constant of 5 nM. N-acetyl-d-glucosamine did not inhibit sCR1–MBL binding, indicating that the carbohydrate binding site of MBL is not involved in binding CR1. C1q inhibited MBL binding to immobilized sCR1, suggesting that MBL and C1q might bind to the same or adjacent sites on CR1. MBL binding to polymorphonuclear leukocytes (PMNs) was associated positively with changes in CR1 expression induced by phorbol myristate acetate. Finally, CR1 mediated the adhesion of human erythrocytes to immobilized MBL and functioned as a phagocytic receptor on PMNs for MBL–immunoglobulin G opsonized bacteria. Thus, MBL binds to both recombinant sCR1 and cellular CR1, which supports the role of CR1 as a cellular receptor for the collectin MBL

    Operations of and Future Plans for the Pierre Auger Observatory

    Full text link
    Technical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200

    Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E>Eth=5.5×1019E>E_{th}=5.5\times 10^{19} eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E>EthE>E_{th} are heavy nuclei with charge ZZ, the proton component of the sources should lead to excesses in the same regions at energies E/ZE/Z. We here report the lack of anisotropies in these directions at energies above Eth/ZE_{th}/Z (for illustrative values of Z=6, 13, 26Z=6,\ 13,\ 26). If the anisotropies above EthE_{th} are due to nuclei with charge ZZ, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies

    Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    Get PDF
    We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10^18 eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/- 0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.Comment: Accepted for publication by PR

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201
    • 

    corecore