146 research outputs found
Interleukin-17 -association to silent lupus nephritis and disease activity
ABSTRACT Background: Systemic lupus erythematosus is a multiorganic, chronic immune disease and lupus nephritis, a severe manifestation, represents the strongest predictor of a poor outcome of this pathology. Cytokines play an important role in lupus nephritis and consequently, their use as biomarkers of active systemic lupus erythematosus disease is of particular interest. The purpose of this work was to study the pro-inflammatory role of interleukin-17 in renal involvement in patients with systemic lupus erythematosus (SLE). Methods: We performed a retrospective study of 87 patients diagnosed with SLE according to the Systemic Lupus International Collaborating Clinics 2012 diagnosis criteria. In this study, we determined the serum levels of interleukin-17 by ELISA. Results: It was observed that 49 patients in the study group presented with positive values of interleukin-17, range (1.12 -23.66) pg/ml. There was a positive correlation of interleukin-17 with active SLE as assessed by the Systemic Lupus Erythematous Disease Activity Index. No association was found between serum interleukin-17 level and renal pathology at the inclusion or in the clinical history of the patients. Patients with leukocyturia and hematuria presented higher values of serum interleukin-17 than those without these manifestations. In the linear regression model, after adjusting for age, gender and treatment we found an independent association between serum IL-17 levels and leukocyturia presence with OR=2.06, 95% CI range (1.22-2.89). Conclusions: A positive correlation has been observed between serum IL-17 and the SLE disease activity as assessed by the SLEDAI score computed without anti-DNA antibodies. Also, the IL-17 levels was strongly associated with the presence of leukocyturia and hematuria, even in patients with no clinical evidence of renal disease that might have silent lupus nephritis usually associated with a benign renal outcome
Sex, age, deprivation and patterns in life expectancy in Quebec, Canada: a population-based study
<p>Abstract</p> <p>Background</p> <p>Little research has evaluated disparities in life expectancy according to material deprivation taking into account differences across the lifespan between men and women. This study investigated age- and sex-specific life expectancy differentials related to area-level material deprivation for the province of Québec, Canada from 1989-2004.</p> <p>Methods</p> <p>Age- and sex-specific life expectancy across the lifespan was calculated for three periods (1989-1992, 1995-1998, and 2001-2004) for the entire Québec population residing in 162 community groupings ranked according to decile of material deprivation. Absolute and relative measures were calculated to summarize differences between the most and least deprived deciles.</p> <p>Results</p> <p>Life expectancy differentials between the most and least deprived deciles were greatest for men. Over time, male differentials increased for age 20 or more, with little change occurring at younger ages. For women, differentials increased across the lifespan and were comparable to men at advanced ages. Despite gains in life expectancy among men relative to women, differentials between men and women were greater for most deprived relative to least deprived deciles.</p> <p>Conclusions</p> <p>Similar to the US, differentials in life expectancy associated with area-level material deprivation increased steadily in Québec from 1989-2004 for males and females of all ages. Differentials were comparable between men and women at advanced ages. Previous research indicating that life expectancy differentials between most and least deprived areas are greater in men may be due to a focus on younger age groups.</p
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Multidimensional Atomic Force Microscopy: A Versatile Novel Technology for Nanopharmacology Research
Nanotechnology is giving us a glimpse into a nascent field of nanopharmacology that deals with pharmacological phenomena at molecular scale. This review presents our perspective on the use of scanning probe microscopy techniques with special emphasis to multidimensional atomic force microscopy (m-AFM) to explore this new field with a particular emphasis to define targets, design therapeutics, and track outcomes of molecular-scale pharmacological interactions. The approach will be to first discuss operating principles of m-AFM and provide representative examples of studies to understand human health and disease at the molecular level and then to address different strategies in defining target macromolecules, screening potential drug candidates, developing and characterizing of drug delivery systems, and monitoring target–drug interactions. Finally, we will discuss some future directions including AFM tip-based parallel sensors integrated with other high-throughput technologies which could be a powerful platform for drug discovery
The Zinc Transporter SLC39A14/ZIP14 Controls G-Protein Coupled Receptor-Mediated Signaling Required for Systemic Growth
Aberrant zinc (Zn) homeostasis is associated with abnormal control of mammalian growth, although the molecular mechanisms of Zn's roles in regulating systemic growth remain to be clarified. Here we report that the cell membrane-localized Zn transporter SLC39A14 controls G-protein coupled receptor (GPCR)-mediated signaling. Mice lacking Slc39a14 (Slc39a14-KO mice) exhibit growth retardation and impaired gluconeogenesis, which are attributable to disrupted GPCR signaling in the growth plate, pituitary gland, and liver. The decreased signaling is a consequence of the reduced basal level of cyclic adenosine monophosphate (cAMP) caused by increased phosphodiesterase (PDE) activity in Slc39a14-KO cells. We conclude that SLC39A14 facilitates GPCR-mediated cAMP-CREB signaling by suppressing the basal PDE activity, and that this is one mechanism for Zn's involvement in systemic growth processes. Our data highlight SLC39A14 as an important novel player in GPCR-mediated signaling. In addition, the Slc39a14-KO mice may be useful for studying the GPCR-associated regulation of mammalian systemic growth
Dietary cadmium and risk of invasive postmenopausal breast cancer in the VITAL cohort.
This study does not support the hypothesis that dietary cadmium intake is a risk factor for breast cancer. However, non-differential measurement error in the estimate of cadmium intake is likely the most important factor that could have obscured an association
A Protective Role for ELR+ Chemokines during Acute Viral Encephalomyelitis
The functional role of ELR-positive CXC chemokines in host defense during acute viral-induced encephalomyelitis was determined. Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of mice resulted in the rapid mobilization of PMNs expressing the chemokine receptor CXCR2 into the blood. Migration of PMNs to the CNS coincided with increased expression of transcripts specific for the CXCR2 ELR-positive chemokine ligands CXCL1, CXCL2, and CXCL5 within the brain. Treatment of JHMV-infected mice with anti-CXCR2 blocking antibody reduced PMN trafficking into the CNS by >95%, dampened MMP-9 activity, and abrogated blood-brain-barrier (BBB) breakdown. Correspondingly, CXCR2 neutralization resulted in diminished infiltration of virus-specific T cells, an inability to control viral replication within the brain, and 100% mortality. Blocking CXCR2 signaling did not impair the generation of virus-specific T cells, indicating that CXCR2 is not required to tailor anti-JHMV T cell responses. Evaluation of mice in which CXCR2 is genetically silenced (CXCR2−/− mice) confirmed that PMNs neither expressed CXCR2 nor migrated in response to ligands CXCL1, CXCL2, or CXCL5 in an in vitro chemotaxis assay. Moreover, JHMV infection of CXCR2−/− mice resulted in an approximate 60% reduction of PMN migration into the CNS, yet these mice survived infection and controlled viral replication within the brain. Treatment of JHMV-infected CXCR2−/− mice with anti-CXCR2 antibody did not modulate PMN migration nor alter viral clearance or mortality, indicating the existence of compensatory mechanisms that facilitate sufficient migration of PMNs into the CNS in the absence of CXCR2. Collectively, these findings highlight a previously unappreciated role for ELR-positive chemokines in enhancing host defense during acute viral infections of the CNS
Lack of Phylogeographic Structure in the Freshwater Cyanobacterium Microcystis aeruginosa Suggests Global Dispersal
Background : Free-living microorganisms have long been assumed to have ubiquitous distributions with little biogeographic signature because they typically exhibit high dispersal potential and large population sizes. However, molecular data provide contrasting results and it is far from clear to what extent dispersal limitation determines geographic structuring of microbial populations. We aimed to determine biogeographical patterns of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. Being widely distributed on a global scale but patchily on a regional scale, this prokaryote is an ideal model organism to study microbial dispersal and biogeography.
Methodology/Principal Findings : The phylogeography of M. aeruginosa was studied based on a dataset of 311 rDNA internal transcribed spacer (ITS) sequences sampled from six continents. Richness of ITS sequences was high (239 ITS types were detected). Genetic divergence among ITS types averaged 4% (maximum pairwise divergence was 13%). Preliminary analyses revealed nearly completely unresolved phylogenetic relationships and a lack of genetic structure among all sequences due to extensive homoplasy at multiple hypervariable sites. After correcting for this, still no clear phylogeographic structure was detected, and no pattern of isolation by distance was found on a global scale. Concomitantly, genetic differentiation among continents was marginal, whereas variation within continents was high and was mostly shared with all other continents. Similarly, no genetic structure across climate zones was detected.
Conclusions/Significance : The high overall diversity and wide global distribution of common ITS types in combination with the lack of phylogeographic structure suggest that intercontinental dispersal of M. aeruginosa ITS types is not rare, and that this species might have a truly cosmopolitan distribution
Measurement of the cross-section for b-jets produced in association with a Z boson at root s=7 TeV with the ATLAS detector ATLAS Collaboration
A measurement is presented of the inclusive cross-section for b-jet production in association with a Z boson in pp collisions at a centre-of-mass energy of root s = 7 TeV. The analysis uses the data sample collected by the ATLAS experiment in 2010, corresponding to an integrated luminosity of approximately 36 pb(-1). The event selection requires a Z boson decaying into high P-T electrons or muons, and at least one b-jet, identified by its displaced vertex, with transverse momentum p(T) > 25 GeV and rapidity vertical bar y vertical bar < 2.1. After subtraction of background processes, the yield is extracted from the vertex mass distribution of the candidate b-jets. The ratio of this cross-section to the inclusive Z cross-section (the average number of b-jets per Z event) is also measured. Both results are found to be in good agreement with perturbative QCD predictions at next-to-leading order
- …