62 research outputs found
The value of EEG attenuation in the prediction of outcome in COVID-19 patients
During the COVID-19 pandemic, electroencephalography (EEG) proved to be a useful tool to demonstrate brain involvement. Many studies reported non-reactive generalized slowing as the most frequent pattern and epileptiform activity in a minority of patients
Early Effects of Passive Leg-Raising Test, Fluid Challenge, and Norepinephrine on Cerebral Autoregulation and Oxygenation in COVID-19 Critically Ill Patients.
Background: Coronavirus disease 2019 (COVID-19) patients are at high risk of neurological complications consequent to several factors including persistent hypotension. There is a paucity of data on the effects of therapeutic interventions designed to optimize systemic hemodynamics on cerebral autoregulation (CA) in this group of patients. Methods: Single-center, observational prospective study conducted at San Martino Policlinico Hospital, Genoa, Italy, from October 1 to December 15, 2020. Mechanically ventilated COVID-19 patients, who had at least one episode of hypotension and received a passive leg raising (PLR) test, were included. They were then treated with fluid challenge (FC) and/or norepinephrine (NE), according to patients' clinical conditions, at different moments. The primary outcome was to assess the early effects of PLR test and of FC and NE [when clinically indicated to maintain adequate mean arterial pressure (MAP)] on CA (CA index) measured by transcranial Doppler (TCD). Secondary outcomes were to evaluate the effects of PLR test, FC, and NE on systemic hemodynamic variables, cerebral oxygenation (rSo2), and non-invasive intracranial pressure (nICP). Results: Twenty-three patients were included and underwent PLR test. Of these, 22 patients received FC and 14 were treated with NE. The median age was 62 years (interquartile range = 57-68.5 years), and 78% were male. PLR test led to a low CA index [58% (44-76.3%)]. FC and NE administration resulted in a CA index of 90.8% (74.2-100%) and 100% (100-100%), respectively. After PLR test, nICP based on pulsatility index and nICP based on flow velocity diastolic formula was increased [18.6 (17.7-19.6) vs. 19.3 (18.2-19.8) mm Hg, p = 0.009, and 12.9 (8.5-18) vs. 15 (10.5-19.7) mm Hg, p = 0.001, respectively]. PLR test, FC, and NE resulted in a significant increase in MAP and rSo2. Conclusions: In mechanically ventilated severe COVID-19 patients, PLR test adversely affects CA. An individualized strategy aimed at assessing both the hemodynamic and cerebral needs is warranted in patients at high risk of neurological complications
Sex difference and intra-operative tidal volume: Insights from the LAS VEGAS study
BACKGROUND: One key element of lung-protective ventilation is the use of a low tidal volume (VT). A sex difference in use of low tidal volume ventilation (LTVV) has been described in critically ill ICU patients.OBJECTIVES: The aim of this study was to determine whether a sex difference in use of LTVV also exists in operating room patients, and if present what factors drive this difference.DESIGN, PATIENTS AND SETTING: This is a posthoc analysis of LAS VEGAS, a 1-week worldwide observational study in adults requiring intra-operative ventilation during general anaesthesia for surgery in 146 hospitals in 29 countries.MAIN OUTCOME MEASURES: Women and men were compared with respect to use of LTVV, defined as VT of 8 ml kg-1 or less predicted bodyweight (PBW). A VT was deemed 'default' if the set VT was a round number. A mediation analysis assessed which factors may explain the sex difference in use of LTVV during intra-operative ventilation.RESULTS: This analysis includes 9864 patients, of whom 5425 (55%) were women. A default VT was often set, both in women and men; mode VT was 500 ml. Median [IQR] VT was higher in women than in men (8.6 [7.7 to 9.6] vs. 7.6 [6.8 to 8.4] ml kg-1 PBW, P < 0.001). Compared with men, women were twice as likely not to receive LTVV [68.8 vs. 36.0%; relative risk ratio 2.1 (95% CI 1.9 to 2.1), P < 0.001]. In the mediation analysis, patients' height and actual body weight (ABW) explained 81 and 18% of the sex difference in use of LTVV, respectively; it was not explained by the use of a default VT.CONCLUSION: In this worldwide cohort of patients receiving intra-operative ventilation during general anaesthesia for surgery, women received a higher VT than men during intra-operative ventilation. The risk for a female not to receive LTVV during surgery was double that of males. Height and ABW were the two mediators of the sex difference in use of LTVV.TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov, NCT01601223
Tracheostomy procedures in the intensive care unit: an international survey
Abstract
Introduction
Percutaneous dilatational tracheostomy (PDT) is one of the most frequent procedures performed in the intensive care unit (ICU). PDT may add potential benefit to clinical management of critically ill patients. Despite this, no clinical guidelines are available. We sought to characterize current practice in this international survey.
Methods
An international survey, endorsed and peer reviewed by European Society of Intensive Care Medicine (ESICM), was carried out from May to October 2013. The questionnaire was accessible from the ESICM website in the ‘survey of the month’ section.
Results
429 physicians from 59 countries responded to this survey. Single step dilatational tracheostomy was the most used PDT in ICU. Almost 75 % of PDT’s were performed by intensive care physicians. The main indication for PDT was prolonged mechanical ventilation. Tracheostomies were most frequently performed between 7–15 days after ICU admission. Volume control mechanical ventilation, and a combination of sedation, analgesia, neuromuscular blocking agents and fiberoptic bronchoscopy were used. Surgical tracheostomy was mainly performed in ICU by ENT specialists, and was generally chosen when for patients at increased risk for difficult PDT insertion. Bleeding controlled by compression and stoma infection/inflammation were the most common intra-procedural and late complications, respectively. Informed consent for PDT was obtained in only 60 % of cases.
Conclusions
This first international picture of current practices in regard to tracheostomy insertion demonstrates considerable geographic variation in practice, suggesting a need for greater standardization of approaches to tracheostomy insertion
Percutaneous dilatational tracheostomy with a double-lumen endotracheal tube: A comparison of feasibility, gas exchange, and airway pressures
OBJECTIVE: Gas exchange and airway pressures are markedly altered during percutaneous dilatational tracheostomy (PDT). A double-lumen endotracheal tube (DLET) has been developed for better airway management during PDT. Th e current study prospectively evaluated the in vivo feasibility, gas exchange, and airway pressures during PDT with DLET compared with a conventional endotracheal tube (ETT). METHODS: According to eligibility criteria, patients were divided into a case group (those receiving PDT with DLET) and a control group (those receiving PDT with a conventional ETT). Th e Ciaglia single-dilator technique was used for PDT in both groups. Th e primary end point of this study was the feasibility of tracheostomy with DLET. Th e secondary end points were a comparison of gas exchange, airway pressures, minute volume, and tidal volume before, during, and aft er PDT performed with DLET and conventional ETT. RESULTS: Ten patients meeting the inclusion criteria were assigned to each group. PDTs were performed without diffi culties in nine patients in the DLET group and 10 patients in the conventional ETT group. During PDT, gas exchange, airway pressures, and minute ventilation remained more stable in the DLET group and were signifi cantly diff erent from those in the conventional ETT group. CONCLUSIONS: PDT with DLET can be performed safely without diffi culties limiting the technique. Furthermore, during PDT, the use of the DLET resulted in more stable gas exchange, airway pressures, and ventilation than PDT with a conventional ETT. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01691222; URL: www.clinicaltrials.gov
Neuromonitoring during general anesthesia in non-neurologic surgery
Cerebral complications are common in perioperative settings even in non-neurosurgical procedures. These include postoperative cognitive dysfunction or delirium as well as cerebrovascular accidents. During surgery, it is essential to ensure an adequate degree of sedation and analgesia, and at the same time, to provide hemodynamic and respiratory stability in order to minimize neurological complications. In this context, the role of neuromonitoring in the operating room is gaining interest, even in the non-neurolosurgical population. The use of multimodal neuromonitoring can potentially reduce the occurrence of adverse effects during and after surgery, and optimize the administration of anesthetic drugs. In addition to the traditional focus on monitoring hemodynamic and respiratory systems during general anesthesia, the ability to constantly monitor the activity and maintenance of brain homeostasis, creating evidence-based protocols, should also become part of the standard of care: in this challenge, neuromonitoring comes to our aid. In this review, we aim to describe the role of the main types of noninvasive neuromonitoring such as those based on electroencephalography (EEG) waves (EEG, Entropy module, Bispectral Index, Narcotrend Monitor), near-infrared spectroscopy (NIRS) based on noninvasive measurement of cerebral regional oxygenation, and Transcranial Doppler used in the perioperative settings in non-neurosurgical intervention. We also describe the advantages, disadvantage, and limitation of each monitoring technique
Effects of positive end-expiratory pressure on lung ultrasound patterns and their correlation with intracranial pressure in mechanically ventilated brain injured patients
Background: The effects of positive end-expiratory pressure (PEEP) on lung ultrasound (LUS) patterns, and their relationship with intracranial pressure (ICP) in brain injured patients have not been completely clarified. The primary aim of this study was to assess the effect of two levels of PEEP (5 and 15 cmH2O) on global (LUStot) and regional (anterior, lateral, and posterior areas) LUS scores and their correlation with changes of invasive ICP. Secondary aims included: the evaluation of the effect of PEEP on respiratory mechanics, arterial partial pressure of carbon dioxide (PaCO2) and hemodynamics; the correlation between changes in ICP and LUS as well as respiratory parameters; the identification of factors at baseline as potential predictors of ICP response to higher PEEP. Methods: Prospective, observational study including adult mechanically ventilated patients with acute brain injury requiring invasive ICP. Total and regional LUS scores, ICP, respiratory mechanics, and arterial blood gases values were analyzed at PEEP 5 and 15 cmH2O. Results: Thirty patients were included; 19 of them (63.3%) were male, with median age of 65 years [interquartile range (IQR) = 66.7–76.0]. PEEP from 5 to 15 cmH2O reduced LUS score in the posterior regions (LUSp, median value from 7 [5–8] to 4.5 [3.7–6], p = 0.002). Changes in ICP were significantly correlated with changes in LUStot (rho = 0.631, p = 0.0002), LUSp (rho = 0.663, p < 0.0001), respiratory system compliance (rho = − 0.599, p < 0.0001), mean arterial pressure (rho = − 0.833, p < 0.0001) and PaCO2 (rho = 0.819, p < 0.0001). Baseline LUStot score predicted the increase of ICP with PEEP. Conclusions: LUS-together with the evaluation of respiratory and clinical variables-can assist the clinicians in the bedside assessment and prediction of the effect of PEEP on ICP in patients with acute brain injury.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Novel Synthetic and Natural Therapies for Traumatic Brain Injury
Traumatic brain injury (TBI) is a major cause of disability and death worldwide. The initial mechanical insult results in tissue and vascular disruption with hemorrhages and cellular necrosis that is followed by dynamic secondary brain damage that presumably results in additional destruction of the brain. In order to minimize deleterious consequences of the secondary brain damage- such as inflammation, bleeding or reduced oxygen supply. The old concept of the -staircase approach- has been updated in recent years by most guidelines and should be followed as it is considered the only validated approach for the treatment of TBI. Besides, a variety of novel therapies have been proposed as neuroprotectants. The molecular mechanisms of each drug involved in the inhibition of secondary brain injury can result as a potential target for the early and late treatment of TBI. However, no specific recommendation is available on their use in the clinical setting. The administration of both synthetic and natural compounds, which act on specific pathways involved in the destructive processes after TBI, even if usually employed for the treatment of other diseases, can show potential benefits. This review represents a massive effort towards current and novel therapies for TBI that have been investigated in both pre-clinical and clinical settings. This review aims to summarize the advancement in therapeutic strategies based on specific and distinct -target of therapies-: brain edema, ICP control, neuronal activity and plasticity, anti-inflammatory and immunomodulatory effects, cerebral autoregulation, antioxidant properties, and future perspectives with the adoption of mesenchymal stromal cells
- …