38 research outputs found
Analysis of the vector and axialvector mesons with QCD sum rules
In this article, we study the vector and axialvector mesons with the
QCD sum rules, and make reasonable predictions for the masses and decay
constants, then calculate the leptonic decay widths. The present predictions
for the masses and decay constants can be confronted with the experimental data
in the future. We can also take the masses and decay constants as basic input
parameters and study other phenomenological quantities with the three-point
vacuum correlation functions via the QCD sum rules.Comment: 14 pages, 16 figure
Deconstructing Angular Correlations in ZH, ZZ, and WW Production at LEP2
We apply a generalized spin-basis analysis to associated Higgs production and
gauge boson pair production at LEP. This framework allows us to identify a
choice of spin axes for the processes e+ e- --> ZH,ZZ which leads to strikingly
different correlations among the decay products, even well above threshold.
This spin basis optimizes the difference in the angular correlations for these
two processes. In contrast, the same distributions display little contrast when
the helicity basis is used. We also apply this technique to the case of W boson
pair production.Comment: 47 pages, 19 figures, revtex. Added paragraph on the effects of
finite detector resolution on the angular reconstruction. Improved
introduction to section on WW production. Supplied missing plot key
Theta dependence of SU(N) gauge theories in the presence of a topological term
We review results concerning the theta dependence of 4D SU(N) gauge theories
and QCD, where theta is the coefficient of the CP-violating topological term in
the Lagrangian. In particular, we discuss theta dependence in the large-N
limit.
Most results have been obtained within the lattice formulation of the theory
via numerical simulations, which allow to investigate the theta dependence of
the ground-state energy and the spectrum around theta=0 by determining the
moments of the topological charge distribution, and their correlations with
other observables. We discuss the various methods which have been employed to
determine the topological susceptibility, and higher-order terms of the theta
expansion. We review results at zero and finite temperature. We show that the
results support the scenario obtained by general large-N scaling arguments, and
in particular the Witten-Veneziano mechanism to explain the U(1)_A problem. We
also compare with results obtained by other approaches, especially in the
large-N limit, where the issue has been also addressed using, for example, the
AdS/CFT correspondence.
We discuss issues related to theta dependence in full QCD: the neutron
electric dipole moment, the dependence of the topological susceptibility on the
quark masses, the U(1)_A symmetry breaking at finite temperature.
We also consider the 2D CP(N) model, which is an interesting theoretical
laboratory to study issues related to topology. We review analytical results in
the large-N limit, and numerical results within its lattice formulation.
Finally, we discuss the main features of the two-point correlation function
of the topological charge density.Comment: A typo in Eq. (3.9) has been corrected. An additional subsection
(5.2) has been inserted to demonstrate the nonrenormalizability of the
relevant theta parameter in the presence of massive fermions, which implies
that the continuum (a -> 0) limit must be taken keeping theta fixe
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival