9 research outputs found
Axion-photon conversion caused by dielectric interfaces: quantum field calculation
Axion-photon conversion at dielectric interfaces, immersed in a
near-homogeneous magnetic field, is the basis for the dielectric haloscope
method to search for axion dark matter. In analogy to transition radiation,
this process is possible because the photon wave function is modified by the
dielectric layers ("Garibian wave function") and is no longer an eigenstate of
momentum. A conventional first-order perturbative calculation of the transition
probability between a quantized axion state and these distorted photon states
provides the microwave production rate. It agrees with previous results based
on solving the classical Maxwell equations for the combined system of axions
and electromagnetic fields. We argue that in general the average photon
production rate is given by our result, independently of the detailed quantum
state of the axion field. Moreover, our result provides a new perspective on
axion-photon conversion in dielectric haloscopes because the rate is based on
an overlap integral between unperturbed axion and photon wave functions, in
analogy to the usual treatment of microwave-cavity haloscopes.Comment: 15 pages, 2 figures; v2: minor changes to match published versio
Neutrino oscillations in space within a solvable model
We study neutrino oscillations in space within a realistic model in which
both the source and the target are considered to be stationary having
Gaussian-form localizations. The model admits an exact analytic solution in
field theory which may be expressed in terms of complementary error functions,
thereby allowing for a quantitative discussion of quantum-mechanical (coherent)
versus statistical (incoherent) uncertainties. The solvable model provides an
insightful framework in addressing questions related to propagation and
oscillation of neutrinos that may not be attainable by the existing approaches.
We find a novel form of plane-wave behaviour of neutrino oscillations if the
localization spread of the source and target states due to quantum mechanics is
of macroscopic size but much smaller than neutrinos' oscillation length.
Finally, we discuss the limits on the coherence length of neutrino oscillations
and find that they mainly arise from uncertainties of statistical origin.Comment: 17 pages, ReVTeX, clarifications adde
Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment
Abstract
We study damping signatures at the Jiangmen Underground Neutrino Observatory (JUNO), a medium-baseline reactor neutrino oscillation experiment. These damping signatures are motivated by various new physics models, including quantum decoherence, nu(3) decay, neutrino absorption, and wave packet decoherence. The phenomenological effects of these models can be characterized by exponential damping factors at the probability level. We assess how well JUNO can constrain these damping parameters and how to disentangle these different damping signatures at JUNO. Compared to current experimental limits, JUNO can significantly improve the limits on tau(3)/m(3) in the nu(3) decay model, the width of the neutrino wave packet sigma(x), and the intrinsic relative dispersion of neutrino momentum sigma(rel)
Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report
International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents