3 research outputs found

    Effects of Dietary Supplementation of a Resin-Purified Aqueous-Isopropanol Olive Leaf Extract on Meat and Liver Antioxidant Parameters in Broilers

    No full text
    Olive leaves are byproducts οf the agro-industrial sector and are rich in bioactive compounds with antioxidant properties. They could be supplemented in poultry diets powdered or less frequently as extracts to improve performance, health and product quality. The objective of this study was to investigate the possible beneficial effects of an aqueous isopropanol olive leaf extract—purified through filtration (250–25 µm) and a resin (XAD-4)—when supplemented in broiler chickens’ diets, on meat quality parameters, focusing mainly on antioxidant parameters as there is limited published information. For this purpose, four-hundred-and-eighty-day-old broilers were randomly assigned to four dietary treatments: T1 (control: basal diet); T2 (1% olive leaf extract); T3 (2.5% olive leaf extract); T4 (positive control: 0.1% encapsulated oregano oil commercially used as feed additive). At the end of the experimental period (day 42), the birds were slaughtered, and samples from breast, thigh meat and liver were collected for antioxidant parameters evaluation. On day 1, after slaughter, in thigh meat, Malondialdehyde (MDA) was lower in T2 compared to T3, and total phenolic content (TPC) was higher in T2 compared to T3 and T4. Total antioxidant capacity (TAC) was increased in T2 and T4 breast meat compared to the control. In liver, T4 treatment resulted in higher TPC. The lack of dose-dependent effect for olive leaf extract may be attributed to the pro-oxidant effects of some bioactive compounds found in olive leaves, such as oleuropein, when supplemented at higher levels. In summary, it can be inferred that the inclusion of 1% olive leaf extract in the feed of broilers has the potential to mitigate oxidation in broiler meat and maybe enhance its quality

    Effects of Enriched-in-Oleuropein Olive Leaf Extract Dietary Supplementation on Egg Quality and Antioxidant Parameters in Laying Hens

    No full text
    The objective of the present study was to evaluate the effects of an olive leaf extract obtained with an up-to-date laboratory method, when supplemented at different levels in laying hens’ diets, on egg quality, egg yolk antioxidant parameters, fatty acid content, and liver pathology characteristics. Thus, 96 laying hens of the ISA-Brown breed were allocated to 48 experimental cages with two hens in each cage, resulting in 12 replicates per treatment. Treatments were: T1 (Control: basal diet); T2 (1% olive leaf extract); T3 (2.5% olive leaf extract); T4 (Positive control: 0.1% encapsulated oregano oil). Eggshell weight and thickness were improved in all treatments compared to the control, with T2 being significantly higher till the end of the experiment (p < 0.001). Egg yolk MDA content was lower for the T2 and T4 groups, while total phenol content and Haugh units were greater in the T2. The most improved fatty acid profile was the one of T3 yolks. The α-tocopherol yolk content was higher in all groups compared to T1. No effect was observed on cholesterol content at any treatment. Based on the findings, it can be inferred that the inclusion of olive leaf extract at a concentration of 1% in the diet leads to enhancements in specific egg quality attributes, accompanied by an augmentation of the antioxidant capacity

    Effects of Dietary Supplementation of Essential Oils, Lysozyme, and Vitamins’ Blend on Layer Hen Performance, Viral Vaccinal Response, and Egg Quality Characteristics

    No full text
    Maintaining respiratory tract health is crucial for layers, impacting gut health, laying performance, and egg quality. Viral diseases and standard vaccinations can compromise tracheal epithelium function, leading to oxidative stress. This study assessed the impact of a blend of feed additives, predominantly lysozyme (L), essential oils (EO), and vitamins (VIT) (referred to as L + EO + VIT), on young layers during an oral vaccination schedule. The supplementation significantly enhanced antibody titers for Newcastle Disease Virus (NDV) and Infectious Bronchitis Virus (IBV) after vaccination, trachea functionality and intestinal health in the jejunum, increased egg production, and exhibited a trend toward higher egg weight. Although feed intake showed no significant difference, egg quality remained consistent across experimental groups. Moreover, L + EO + VIT supplementation elevated total phenolic content in eggs, improving oxidative stability in both fresh and stored eggs, particularly under iron-induced oxidation. Notably, it substantially reduced yolk lipid peroxidation and albumen protein carbonyls. In conclusion, water supplementation with L + EO + VIT may enhance humoral immune response to IBV and NDV, positively impacting hen productivity. These findings indicate improved tracheal function and enhanced oxidative stability, emphasizing the potential of this blend in promoting overall health and performance in layers
    corecore