24 research outputs found
Propagation of time-truncated Airy-type pulses in media with quadratic and cubic dispersion
In this paper, we describe analytically the propagation of Airy-type pulses
truncated by a finite-time aperture when second and third order dispersion
effects are considered. The mathematical method presented here, based on the
superposition of exponentially truncated Airy pulses, is very effective,
allowing us to avoid the use of time-consuming numerical simulations. We
analyze the behavior of the time truncated Ideal-Airy pulse and also the
interesting case of a time truncated Airy pulse with a "defect" in its initial
profile, which reveals the self-healing property of this kind of pulse
solution.Comment: 9 pages. 5 figure
Modern applications of the bateman-whittaker theory
[abstract not available
Conditions for Scalar and Electromagnetic Wave Pulses to Be “Strange” or Not
Vector-valued electromagnetic waves for which the integral of the electric field over time is zero at every location in space were characterized as “usual” by Bessonov several decades ago. Otherwise, they were called “strange”. Recently, Popov and Vinogradov studied conditions leading to usual waves using a spectral representation. Their main result is that pulses of finite energy in free space are usual and, consequently, bipolar. However, they do not exclude the possibility of the existence of finite-energy strange pulses, although quite exotic, in a vacuum. Our emphasis in this article is to examine what the relevant necessary and sufficient conditions are for usual and strange waves, particularly for scalar pulses. Illustrative examples are provided, including spherical symmetric collapsing pulses, propagation-invariant, and the so-called almost undistorted spatiotemporally localized waves. Finally, source-generated strange electromagnetic fields are reported
Novel luminal spatiotemporally localized waves
[abstract not available