6 research outputs found

    Massively-Parallel Feature Selection for Big Data

    Full text link
    We present the Parallel, Forward-Backward with Pruning (PFBP) algorithm for feature selection (FS) in Big Data settings (high dimensionality and/or sample size). To tackle the challenges of Big Data FS PFBP partitions the data matrix both in terms of rows (samples, training examples) as well as columns (features). By employing the concepts of pp-values of conditional independence tests and meta-analysis techniques PFBP manages to rely only on computations local to a partition while minimizing communication costs. Then, it employs powerful and safe (asymptotically sound) heuristics to make early, approximate decisions, such as Early Dropping of features from consideration in subsequent iterations, Early Stopping of consideration of features within the same iteration, or Early Return of the winner in each iteration. PFBP provides asymptotic guarantees of optimality for data distributions faithfully representable by a causal network (Bayesian network or maximal ancestral graph). Our empirical analysis confirms a super-linear speedup of the algorithm with increasing sample size, linear scalability with respect to the number of features and processing cores, while dominating other competitive algorithms in its class

    Atypical Mycobacterial Infection Presenting as Persistent Skin Lesion in a Patient with Ulcerative Colitis

    Get PDF
    Immunosuppressive drugs are commonly used for the treatment of inflammatory bowel disease. Patients receiving immunosuppressants are susceptible to a variety of infections with opportunistic pathogens. We present a case of skin infection with Mycobacterium chelonae in a 60-year-old Caucasian woman with ulcerative colitis who had been treated with corticosteroids and azathioprine. The disease manifested with fever and rash involving the right leg. Infliximab was administered due to a presumptive diagnosis of pyoderma gangrenosum, leading to worsening of the clinical syndrome and admission to our hospital. Routine cultures from various sites were all negative. However, Ziehl-Neelsen staining of pus from the lesions revealed acid-fast bacilli, and culture yielded a rapidly growing mycobacterium further identified as M. chelonae. The patient responded to a clarithromycin-based regimen. Clinicians should be aware of skin lesions caused by atypical mycobacteria in immunocompromised patients with inflammatory bowel disease. Furthermore, they should be able to thoroughly investigate and promptly treat these conditions

    Massively-Parallel Feature Selection for Big Data

    No full text
    We present the Parallel, Forward-Backward with Pruning (PFBP) algorithm for feature selection (FS) in Big Data settings (high dimensionality and/or sample size). To tackle the challenges of Big Data FS PFBP partitions the data matrix both in terms of rows (samples, training examples) as well as columns (features). By employing the concepts of p-values of conditional independence tests and meta-analysis techniques PFBP manages to rely only on computations local to a partition while minimizing communication costs. Then, it employs powerful and safe (asymptotically sound) heuristics to make early, approximate decisions, such as Early Dropping of features from consideration in subsequent iterations, Early Stopping of consideration of features within the same iteration, or Early Return of the winner in each iteration. PFBP provides asymptotic guarantees of optimal-ity for data distributions faithfully representable by a causal network (Bayesian network or maximal ancestral graph). Our empirical analysis confirms a super-linear speedup of the algorithm with increasing sample size, linear scalability with respect to the number of features and processing cores, while dominating other competitive algorithms in its class

    A greedy feature selection algorithm for Big Data of high dimensionality

    No full text
    International audienceWe present the Parallel, Forward–Backward with Pruning (PFBP) algorithm for feature selection (FS) for Big Data of high dimensionality. PFBP partitions the data matrix both in terms of rows as well as columns. By employing the concepts of p-values of conditional independence tests and meta-analysis techniques, PFBP relies only on computations local to a partition while minimizing communication costs, thus massively parallelizing computations. Similar techniques for combining local computations are also employed to create the final predictive model. PFBP employs asymptotically sound heuristics to make early, approximate decisions, such as Early Dropping of features from consideration in subsequent iterations, Early Stopping of consideration of features within the same iteration, or Early Return of the winner in each iteration. PFBP provides asymptotic guarantees of optimality for data distributions faithfully representable by a causal network (Bayesian network or maximal ancestral graph). Empirical analysis confirms a super-linear speedup of the algorithm with increasing sample size, linear scalability with respect to the number of features and processing cores. An extensive comparative evaluation also demonstrates the effectiveness of PFBP against other algorithms in its class. The heuristics presented are general and could potentially be employed to other greedy-type of FS algorithms. An application on simulated Single Nucleotide Polymorphism (SNP) data with 500K samples is provided as a use case
    corecore